( + \mathfrak { F } ( 2 + 1 ) ( 2 ^ { 2 } + 1 ) ( 2 ^ { 4 } + 1 ) ( 2 ^ { 8 } + 1 ) ( 2 ^ { 16 } + 1 ) ( 2 ^ { 32 } + 1 ) + 1
Enrhifo
18446744073709551615F+1
Gwahaniaethu w.r.t. F
18446744073709551615
Rhannu
Copïo i clipfwrdd
F\times 3\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Adio 2 a 1 i gael 3.
F\times 3\left(4+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Cyfrifo 2 i bŵer 2 a chael 4.
F\times 3\times 5\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Adio 4 a 1 i gael 5.
F\times 15\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Lluosi 3 a 5 i gael 15.
F\times 15\left(16+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Cyfrifo 2 i bŵer 4 a chael 16.
F\times 15\times 17\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Adio 16 a 1 i gael 17.
F\times 255\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Lluosi 15 a 17 i gael 255.
F\times 255\left(256+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Cyfrifo 2 i bŵer 8 a chael 256.
F\times 255\times 257\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Adio 256 a 1 i gael 257.
F\times 65535\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Lluosi 255 a 257 i gael 65535.
F\times 65535\left(65536+1\right)\left(2^{32}+1\right)+1
Cyfrifo 2 i bŵer 16 a chael 65536.
F\times 65535\times 65537\left(2^{32}+1\right)+1
Adio 65536 a 1 i gael 65537.
F\times 4294967295\left(2^{32}+1\right)+1
Lluosi 65535 a 65537 i gael 4294967295.
F\times 4294967295\left(4294967296+1\right)+1
Cyfrifo 2 i bŵer 32 a chael 4294967296.
F\times 4294967295\times 4294967297+1
Adio 4294967296 a 1 i gael 4294967297.
F\times 18446744073709551615+1
Lluosi 4294967295 a 4294967297 i gael 18446744073709551615.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Adio 2 a 1 i gael 3.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\left(4+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\times 5\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Adio 4 a 1 i gael 5.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Lluosi 3 a 5 i gael 15.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\left(16+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Cyfrifo 2 i bŵer 4 a chael 16.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\times 17\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Adio 16 a 1 i gael 17.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Lluosi 15 a 17 i gael 255.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\left(256+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Cyfrifo 2 i bŵer 8 a chael 256.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\times 257\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Adio 256 a 1 i gael 257.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Lluosi 255 a 257 i gael 65535.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\left(65536+1\right)\left(2^{32}+1\right)+1)
Cyfrifo 2 i bŵer 16 a chael 65536.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\times 65537\left(2^{32}+1\right)+1)
Adio 65536 a 1 i gael 65537.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\left(2^{32}+1\right)+1)
Lluosi 65535 a 65537 i gael 4294967295.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\left(4294967296+1\right)+1)
Cyfrifo 2 i bŵer 32 a chael 4294967296.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\times 4294967297+1)
Adio 4294967296 a 1 i gael 4294967297.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 18446744073709551615+1)
Lluosi 4294967295 a 4294967297 i gael 18446744073709551615.
18446744073709551615F^{1-1}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
18446744073709551615F^{0}
Tynnu 1 o 1.
18446744073709551615\times 1
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.
18446744073709551615
Ar gyfer unrhyw derm t, t\times 1=t a 1t=t.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}