Datrys ar gyfer z
z=\frac{3}{1000000}=0.000003
z=-\frac{3}{1000000}=-0.000003
Rhannu
Copïo i clipfwrdd
z^{2}-25\times \frac{1}{1000000000000}+16\times 10^{-12}=0
Cyfrifo 10 i bŵer -12 a chael \frac{1}{1000000000000}.
z^{2}-\frac{1}{40000000000}+16\times 10^{-12}=0
Lluosi 25 a \frac{1}{1000000000000} i gael \frac{1}{40000000000}.
z^{2}-\frac{1}{40000000000}+16\times \frac{1}{1000000000000}=0
Cyfrifo 10 i bŵer -12 a chael \frac{1}{1000000000000}.
z^{2}-\frac{1}{40000000000}+\frac{1}{62500000000}=0
Lluosi 16 a \frac{1}{1000000000000} i gael \frac{1}{62500000000}.
z^{2}-\frac{9}{1000000000000}=0
Adio -\frac{1}{40000000000} a \frac{1}{62500000000} i gael -\frac{9}{1000000000000}.
z^{2}=\frac{9}{1000000000000}
Ychwanegu \frac{9}{1000000000000} at y ddwy ochr. Mae adio unrhyw beth at sero yn cyrraedd ei swm ei hun.
z=\frac{3}{1000000} z=-\frac{3}{1000000}
Cymryd isradd dwy ochr yr hafaliad.
z^{2}-25\times \frac{1}{1000000000000}+16\times 10^{-12}=0
Cyfrifo 10 i bŵer -12 a chael \frac{1}{1000000000000}.
z^{2}-\frac{1}{40000000000}+16\times 10^{-12}=0
Lluosi 25 a \frac{1}{1000000000000} i gael \frac{1}{40000000000}.
z^{2}-\frac{1}{40000000000}+16\times \frac{1}{1000000000000}=0
Cyfrifo 10 i bŵer -12 a chael \frac{1}{1000000000000}.
z^{2}-\frac{1}{40000000000}+\frac{1}{62500000000}=0
Lluosi 16 a \frac{1}{1000000000000} i gael \frac{1}{62500000000}.
z^{2}-\frac{9}{1000000000000}=0
Adio -\frac{1}{40000000000} a \frac{1}{62500000000} i gael -\frac{9}{1000000000000}.
z=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{1000000000000}\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 0 am b, a -\frac{9}{1000000000000} am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-\frac{9}{1000000000000}\right)}}{2}
Sgwâr 0.
z=\frac{0±\sqrt{\frac{9}{250000000000}}}{2}
Lluoswch -4 â -\frac{9}{1000000000000}.
z=\frac{0±\frac{3}{500000}}{2}
Cymryd isradd \frac{9}{250000000000}.
z=\frac{3}{1000000}
Datryswch yr hafaliad z=\frac{0±\frac{3}{500000}}{2} pan fydd ± yn plws.
z=-\frac{3}{1000000}
Datryswch yr hafaliad z=\frac{0±\frac{3}{500000}}{2} pan fydd ± yn minws.
z=\frac{3}{1000000} z=-\frac{3}{1000000}
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}