Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

a+b=-1 ab=-6
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}-x-6 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-6 2,-3
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -6.
1-6=-5 2-3=-1
Cyfrifo'r swm ar gyfer pob pâr.
a=-3 b=2
Yr ateb yw'r pâr sy'n rhoi'r swm -1.
\left(x-3\right)\left(x+2\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
x=3 x=-2
I ddod o hyd i atebion hafaliad, datryswch x-3=0 a x+2=0.
a+b=-1 ab=1\left(-6\right)=-6
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx-6. I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-6 2,-3
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -6.
1-6=-5 2-3=-1
Cyfrifo'r swm ar gyfer pob pâr.
a=-3 b=2
Yr ateb yw'r pâr sy'n rhoi'r swm -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Ailysgrifennwch x^{2}-x-6 fel \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Ni ddylech ffactorio x yn y cyntaf a 2 yn yr ail grŵp.
\left(x-3\right)\left(x+2\right)
Ffactoriwch y term cyffredin x-3 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=3 x=-2
I ddod o hyd i atebion hafaliad, datryswch x-3=0 a x+2=0.
x^{2}-x-6=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, -1 am b, a -6 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Lluoswch -4 â -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Adio 1 at 24.
x=\frac{-\left(-1\right)±5}{2}
Cymryd isradd 25.
x=\frac{1±5}{2}
Gwrthwyneb -1 yw 1.
x=\frac{6}{2}
Datryswch yr hafaliad x=\frac{1±5}{2} pan fydd ± yn plws. Adio 1 at 5.
x=3
Rhannwch 6 â 2.
x=-\frac{4}{2}
Datryswch yr hafaliad x=\frac{1±5}{2} pan fydd ± yn minws. Tynnu 5 o 1.
x=-2
Rhannwch -4 â 2.
x=3 x=-2
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}-x-6=0
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
x^{2}-x-6-\left(-6\right)=-\left(-6\right)
Adio 6 at ddwy ochr yr hafaliad.
x^{2}-x=-\left(-6\right)
Mae tynnu -6 o’i hun yn gadael 0.
x^{2}-x=6
Tynnu -6 o 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Rhannwch -1, cyfernod y term x, â 2 i gael -\frac{1}{2}. Yna ychwanegwch sgwâr -\frac{1}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Sgwariwch -\frac{1}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Adio 6 at \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Ffactora x^{2}-x+\frac{1}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Symleiddio.
x=3 x=-2
Adio \frac{1}{2} at ddwy ochr yr hafaliad.