Datrys ar gyfer x
x=-5
x=0
Graff
Rhannu
Copïo i clipfwrdd
x^{2}+2x+1=1-3x
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+1\right)^{2}.
x^{2}+2x+1-1=-3x
Tynnu 1 o'r ddwy ochr.
x^{2}+2x=-3x
Tynnu 1 o 1 i gael 0.
x^{2}+2x+3x=0
Ychwanegu 3x at y ddwy ochr.
x^{2}+5x=0
Cyfuno 2x a 3x i gael 5x.
x\left(x+5\right)=0
Ffactora allan x.
x=0 x=-5
I ddod o hyd i atebion hafaliad, datryswch x=0 a x+5=0.
x^{2}+2x+1=1-3x
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+1\right)^{2}.
x^{2}+2x+1-1=-3x
Tynnu 1 o'r ddwy ochr.
x^{2}+2x=-3x
Tynnu 1 o 1 i gael 0.
x^{2}+2x+3x=0
Ychwanegu 3x at y ddwy ochr.
x^{2}+5x=0
Cyfuno 2x a 3x i gael 5x.
x=\frac{-5±\sqrt{5^{2}}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 5 am b, a 0 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2}
Cymryd isradd 5^{2}.
x=\frac{0}{2}
Datryswch yr hafaliad x=\frac{-5±5}{2} pan fydd ± yn plws. Adio -5 at 5.
x=0
Rhannwch 0 â 2.
x=-\frac{10}{2}
Datryswch yr hafaliad x=\frac{-5±5}{2} pan fydd ± yn minws. Tynnu 5 o -5.
x=-5
Rhannwch -10 â 2.
x=0 x=-5
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}+2x+1=1-3x
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+1\right)^{2}.
x^{2}+2x+1-1=-3x
Tynnu 1 o'r ddwy ochr.
x^{2}+2x=-3x
Tynnu 1 o 1 i gael 0.
x^{2}+2x+3x=0
Ychwanegu 3x at y ddwy ochr.
x^{2}+5x=0
Cyfuno 2x a 3x i gael 5x.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
Rhannwch 5, cyfernod y term x, â 2 i gael \frac{5}{2}. Yna ychwanegwch sgwâr \frac{5}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Sgwariwch \frac{5}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
Ffactora x^{2}+5x+\frac{25}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Symleiddio.
x=0 x=-5
Tynnu \frac{5}{2} o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}