Enrhifo
\frac{8\left(\sqrt{3}+2\right)}{3}\approx 9.952135487
Ehangu
\frac{8 \sqrt{3} + 16}{3} = 9.95213548685034
Rhannu
Copïo i clipfwrdd
1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(1+\sqrt{3}\right)^{2}.
1+2\sqrt{3}+3+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Sgwâr \sqrt{3} yw 3.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Adio 1 a 3 i gael 4.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+\frac{3}{3}\right)^{2}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{3}{3}.
4+2\sqrt{3}+\left(\frac{\sqrt{3}+3}{3}\right)^{2}
Gan fod gan \frac{\sqrt{3}}{3} a \frac{3}{3} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
4+2\sqrt{3}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
I godi \frac{\sqrt{3}+3}{3} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 4+2\sqrt{3} â \frac{3^{2}}{3^{2}}.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Gan fod gan \frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}} a \frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9}{3^{2}}
Gwnewch y gwaith lluosi yn \left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}.
\frac{48+24\sqrt{3}}{3^{2}}
Gwnewch y gwaith cyfrifo yn 36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9.
\frac{48+24\sqrt{3}}{9}
Ehangu 3^{2}.
1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(1+\sqrt{3}\right)^{2}.
1+2\sqrt{3}+3+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Sgwâr \sqrt{3} yw 3.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Adio 1 a 3 i gael 4.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+\frac{3}{3}\right)^{2}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{3}{3}.
4+2\sqrt{3}+\left(\frac{\sqrt{3}+3}{3}\right)^{2}
Gan fod gan \frac{\sqrt{3}}{3} a \frac{3}{3} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
4+2\sqrt{3}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
I godi \frac{\sqrt{3}+3}{3} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 4+2\sqrt{3} â \frac{3^{2}}{3^{2}}.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Gan fod gan \frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}} a \frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9}{3^{2}}
Gwnewch y gwaith lluosi yn \left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}.
\frac{48+24\sqrt{3}}{3^{2}}
Gwnewch y gwaith cyfrifo yn 36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9.
\frac{48+24\sqrt{3}}{9}
Ehangu 3^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}