Datrys ar gyfer z
z=\frac{4x}{\sqrt{4-x^{2}}+x}
x\neq -\sqrt{2}\text{ and }|x|<2
Datrys ar gyfer x
\left\{\begin{matrix}x=-\sqrt{\frac{2}{z^{2}-4z+8}}z\text{, }&z=0\text{ or }z>4\\x=\sqrt{\frac{2}{z^{2}-4z+8}}z\text{, }&z<4\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
4\left(\sqrt{\frac{1}{4-x^{2}}}\right)^{2}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(-2\sqrt{\frac{1}{4-x^{2}}}x+2\right)^{2}.
4\times \frac{1}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Cyfrifo \sqrt{\frac{1}{4-x^{2}}} i bŵer 2 a chael \frac{1}{4-x^{2}}.
\frac{4}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Mynegwch 4\times \frac{1}{4-x^{2}} fel ffracsiwn unigol.
\frac{4x^{2}}{4-x^{2}}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Mynegwch \frac{4}{4-x^{2}}x^{2} fel ffracsiwn unigol.
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Ffactora 4-x^{2}.
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 4 â \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{4x^{2}+4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Gan fod gan \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)} a \frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{4x^{2}-4x^{2}-8x+8x+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Gwnewch y gwaith lluosi yn 4x^{2}+4\left(x-2\right)\left(-x-2\right).
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Cyfuno termau tebyg yn 4x^{2}-4x^{2}-8x+8x+16.
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch z^{2} â \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{16+z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Gan fod gan \frac{16}{\left(x-2\right)\left(-x-2\right)} a \frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Gwnewch y gwaith lluosi yn 16+z^{2}\left(x-2\right)\left(-x-2\right).
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Cyfuno termau tebyg yn 16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(2-z+2\sqrt{\frac{1}{4-x^{2}}}x\right)^{2}
Tynnu 2 o 4 i gael 2.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\left(\sqrt{\frac{1}{-x^{2}+4}}\right)^{2}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Sgwâr 2-z+2\sqrt{\frac{1}{4-x^{2}}}x.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\times \frac{1}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Cyfrifo \sqrt{\frac{1}{-x^{2}+4}} i bŵer 2 a chael \frac{1}{-x^{2}+4}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Mynegwch 4\times \frac{1}{-x^{2}+4} fel ffracsiwn unigol.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4x^{2}}{-x^{2}+4}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Mynegwch \frac{4}{-x^{2}+4}x^{2} fel ffracsiwn unigol.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4z+4-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
Ffactora -x^{2}+4.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch z^{2}-4z+4 â \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Gan fod gan \frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} a \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Gwnewch y gwaith lluosi yn \left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Cyfuno termau tebyg yn 4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Defnyddio’r briodwedd ddosbarthu i luosi x-2 â -x-2 a chyfuno termau tebyg.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Defnyddio’r briodwedd ddosbarthu i luosi x-2 â -x-2 a chyfuno termau tebyg.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x-\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Tynnu \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4} o'r ddwy ochr.
\frac{4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right)}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Gan fod gan \frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4} a \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16z}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Gwnewch y gwaith lluosi yn 4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right).
\frac{16z-4zx^{2}}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Cyfuno termau tebyg yn 4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16z.
\frac{4z\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{16z-4zx^{2}}{-x^{2}+4}.
4z-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Canslo \left(x-2\right)\left(-x-2\right) yn y rhifiadur a'r enwadur.
4z-8\sqrt{\frac{1}{4-x^{2}}}x+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x
Ychwanegu 4\sqrt{\frac{1}{-x^{2}+4}}xz at y ddwy ochr.
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x+8\sqrt{\frac{1}{4-x^{2}}}x
Ychwanegu 8\sqrt{\frac{1}{4-x^{2}}}x at y ddwy ochr.
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=16\sqrt{\frac{1}{-x^{2}+4}}x
Cyfuno 8\sqrt{\frac{1}{-x^{2}+4}}x a 8\sqrt{\frac{1}{4-x^{2}}}x i gael 16\sqrt{\frac{1}{-x^{2}+4}}x.
\left(4+4\sqrt{\frac{1}{-x^{2}+4}}x\right)z=16\sqrt{\frac{1}{-x^{2}+4}}x
Cyfuno pob term sy'n cynnwys z.
\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z=16\sqrt{\frac{1}{4-x^{2}}}x
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z}{4\sqrt{\frac{1}{4-x^{2}}}x+4}=\frac{16x}{\sqrt{4-x^{2}}\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)}
Rhannu’r ddwy ochr â 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x.
z=\frac{16x}{\sqrt{4-x^{2}}\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)}
Mae rhannu â 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x yn dad-wneud lluosi â 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x.
z=\frac{4x}{\sqrt{4-x^{2}}+x}
Rhannwch \frac{16x}{\sqrt{4-x^{2}}} â 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}