Neidio i'r prif gynnwys
Datrys ar gyfer y
Tick mark Image
Datrys ar gyfer x
Tick mark Image

Rhannu

\left(\sqrt{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Mynegwch \frac{\frac{\frac{\frac{\frac{yx}{545}}{2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}}}{z} fel ffracsiwn unigol.
\left(\sqrt{\frac{\frac{\frac{yx}{545\times 2x}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Mynegwch \frac{\frac{yx}{545}}{2x} fel ffracsiwn unigol.
\left(\sqrt{\frac{\frac{\frac{y}{2\times 545}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Canslo x yn y rhifiadur a'r enwadur.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{z\sqrt{51}}}z}}\right)^{2}=50000
Lluosi 2 a 545 i gael 1090.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\left(\sqrt{51}\right)^{2}}}z}}\right)^{2}=50000
Mae'n rhesymoli enwadur \frac{x}{z\sqrt{51}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{51}.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x\sqrt{51}}{z\times 51}}z}}\right)^{2}=50000
Sgwâr \sqrt{51} yw 51.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}z}}\right)^{2}=50000
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{x\sqrt{51}}{z\times 51}.
\left(\sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}}\right)^{2}=50000
Canslo \sqrt{51} yn y rhifiadur a'r enwadur.
\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Cyfrifo \sqrt{\frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}} i bŵer 2 a chael \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}.
\frac{\frac{y}{1090}}{455\times 5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Mynegwch \frac{\frac{\frac{y}{1090}}{455}}{5555\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} fel ffracsiwn unigol.
\frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Lluosi 455 a 5555 i gael 2527525.
\frac{y}{1090\times 2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Mynegwch \frac{\frac{y}{1090}}{2527525\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z} fel ffracsiwn unigol.
\frac{y}{2755002250\left(z^{2}\right)^{\frac{x}{\sqrt{51}z}}z}=50000
Lluosi 1090 a 2527525 i gael 2755002250.
\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y=50000
Mae'r hafaliad yn y ffurf safonol.
\frac{\frac{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}{2755002250z}y\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
Rhannu’r ddwy ochr â \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.
y=\frac{50000\times 2755002250z}{\left(z^{2}\right)^{-\frac{x}{\sqrt{51}z}}}
Mae rhannu â \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1} yn dad-wneud lluosi â \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.
y=137750112500000z\left(z^{2}\right)^{\frac{\sqrt{51}x}{51z}}
Rhannwch 50000 â \frac{1}{2755002250}\left(z^{2}\right)^{-x\left(\sqrt{51}\right)^{-1}z^{-1}}z^{-1}.