Datrys ar gyfer x
x=4
x=-4
Graff
Rhannu
Copïo i clipfwrdd
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Cyfrifo \frac{10}{3} i bŵer 2 a chael \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
I godi \frac{2\sqrt{73}}{3} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Ehangu 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Gan fod gan \frac{100}{9} a \frac{\left(2\sqrt{73}\right)^{2}}{9} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Ffactora 52=2^{2}\times 13. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 13} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{13}. Cymryd isradd 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
I godi \frac{2\sqrt{13}}{3} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Mynegwch 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} fel ffracsiwn unigol.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 2x^{2} â \frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Gan fod gan \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} a \frac{2x^{2}\times 3^{2}}{3^{2}} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ehangu \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Sgwâr \sqrt{73} yw 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 4 a 73 i gael 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Adio 100 a 292 i gael 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ehangu \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
Sgwâr \sqrt{13} yw 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 4 a 13 i gael 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 2 a 52 i gael 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Cyfrifo 3 i bŵer 2 a chael 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Lluosi 2 a 9 i gael 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Cyfrifo 3 i bŵer 2 a chael 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Rhannu pob term 104+18x^{2} â 9 i gael \frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{104}{9}+2x^{2}-\frac{392}{9}=0
Tynnu \frac{392}{9} o'r ddwy ochr.
-32+2x^{2}=0
Tynnu \frac{392}{9} o \frac{104}{9} i gael -32.
-16+x^{2}=0
Rhannu’r ddwy ochr â 2.
\left(x-4\right)\left(x+4\right)=0
Ystyriwch -16+x^{2}. Ailysgrifennwch -16+x^{2} fel x^{2}-4^{2}. Gellir ffactorio’r gwahaniaeth rhwng sgwariau gan ddefnyddio’r rheol: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
I ddod o hyd i atebion hafaliad, datryswch x-4=0 a x+4=0.
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Cyfrifo \frac{10}{3} i bŵer 2 a chael \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
I godi \frac{2\sqrt{73}}{3} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Ehangu 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Gan fod gan \frac{100}{9} a \frac{\left(2\sqrt{73}\right)^{2}}{9} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Ffactora 52=2^{2}\times 13. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 13} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{13}. Cymryd isradd 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
I godi \frac{2\sqrt{13}}{3} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Mynegwch 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} fel ffracsiwn unigol.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 2x^{2} â \frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Gan fod gan \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} a \frac{2x^{2}\times 3^{2}}{3^{2}} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ehangu \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Sgwâr \sqrt{73} yw 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 4 a 73 i gael 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Adio 100 a 292 i gael 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ehangu \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
Sgwâr \sqrt{13} yw 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 4 a 13 i gael 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 2 a 52 i gael 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Cyfrifo 3 i bŵer 2 a chael 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Lluosi 2 a 9 i gael 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Cyfrifo 3 i bŵer 2 a chael 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Rhannu pob term 104+18x^{2} â 9 i gael \frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
2x^{2}=\frac{392}{9}-\frac{104}{9}
Tynnu \frac{104}{9} o'r ddwy ochr.
2x^{2}=32
Tynnu \frac{104}{9} o \frac{392}{9} i gael 32.
x^{2}=\frac{32}{2}
Rhannu’r ddwy ochr â 2.
x^{2}=16
Rhannu 32 â 2 i gael 16.
x=4 x=-4
Cymryd isradd dwy ochr yr hafaliad.
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Cyfrifo \frac{10}{3} i bŵer 2 a chael \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
I godi \frac{2\sqrt{73}}{3} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Ehangu 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Gan fod gan \frac{100}{9} a \frac{\left(2\sqrt{73}\right)^{2}}{9} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Ffactora 52=2^{2}\times 13. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 13} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{13}. Cymryd isradd 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
I godi \frac{2\sqrt{13}}{3} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Mynegwch 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} fel ffracsiwn unigol.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 2x^{2} â \frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Gan fod gan \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} a \frac{2x^{2}\times 3^{2}}{3^{2}} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ehangu \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Sgwâr \sqrt{73} yw 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 4 a 73 i gael 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Adio 100 a 292 i gael 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ehangu \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
Sgwâr \sqrt{13} yw 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 4 a 13 i gael 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Lluosi 2 a 52 i gael 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Cyfrifo 3 i bŵer 2 a chael 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Lluosi 2 a 9 i gael 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Cyfrifo 3 i bŵer 2 a chael 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Rhannu pob term 104+18x^{2} â 9 i gael \frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{104}{9}+2x^{2}-\frac{392}{9}=0
Tynnu \frac{392}{9} o'r ddwy ochr.
-32+2x^{2}=0
Tynnu \frac{392}{9} o \frac{104}{9} i gael -32.
2x^{2}-32=0
Ar gyfer hafaliadau cwadratig fel yr un hwn, gyda therm x^{2} ond dim term x, mae modd eu datrys drwy ddefnyddio'r fformiwla cwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}., unwaith y cânt eu rhoi ar ffurf safonol: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-32\right)}}{2\times 2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 2 am a, 0 am b, a -32 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-32\right)}}{2\times 2}
Sgwâr 0.
x=\frac{0±\sqrt{-8\left(-32\right)}}{2\times 2}
Lluoswch -4 â 2.
x=\frac{0±\sqrt{256}}{2\times 2}
Lluoswch -8 â -32.
x=\frac{0±16}{2\times 2}
Cymryd isradd 256.
x=\frac{0±16}{4}
Lluoswch 2 â 2.
x=4
Datryswch yr hafaliad x=\frac{0±16}{4} pan fydd ± yn plws. Rhannwch 16 â 4.
x=-4
Datryswch yr hafaliad x=\frac{0±16}{4} pan fydd ± yn minws. Rhannwch -16 â 4.
x=4 x=-4
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}