Enrhifo
\frac{6\sqrt{2}+11}{49}\approx 0.397658804
Rhannu
Copïo i clipfwrdd
\left(\frac{3+\sqrt{2}}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}\right)^{2}
Mae'n rhesymoli enwadur \frac{1}{3-\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â 3+\sqrt{2}.
\left(\frac{3+\sqrt{2}}{3^{2}-\left(\sqrt{2}\right)^{2}}\right)^{2}
Ystyriwch \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{3+\sqrt{2}}{9-2}\right)^{2}
Sgwâr 3. Sgwâr \sqrt{2}.
\left(\frac{3+\sqrt{2}}{7}\right)^{2}
Tynnu 2 o 9 i gael 7.
\frac{\left(3+\sqrt{2}\right)^{2}}{7^{2}}
I godi \frac{3+\sqrt{2}}{7} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{7^{2}}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(3+\sqrt{2}\right)^{2}.
\frac{9+6\sqrt{2}+2}{7^{2}}
Sgwâr \sqrt{2} yw 2.
\frac{11+6\sqrt{2}}{7^{2}}
Adio 9 a 2 i gael 11.
\frac{11+6\sqrt{2}}{49}
Cyfrifo 7 i bŵer 2 a chael 49.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}