Datrys ar gyfer g (complex solution)
\left\{\begin{matrix}g=-\frac{x\epsilon -\epsilon +9}{x}\text{, }&x\neq 0\\g\in \mathrm{C}\text{, }&x=0\text{ and }\epsilon =9\end{matrix}\right.
Datrys ar gyfer x (complex solution)
\left\{\begin{matrix}x=\frac{\epsilon -9}{g+\epsilon }\text{, }&\epsilon \neq -g\\x\in \mathrm{C}\text{, }&\epsilon =9\text{ and }g=-9\end{matrix}\right.
Datrys ar gyfer g
\left\{\begin{matrix}g=-\frac{x\epsilon -\epsilon +9}{x}\text{, }&x\neq 0\\g\in \mathrm{R}\text{, }&x=0\text{ and }\epsilon =9\end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}x=\frac{\epsilon -9}{g+\epsilon }\text{, }&\epsilon \neq -g\\x\in \mathrm{R}\text{, }&\epsilon =9\text{ and }g=-9\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
9+xg=\epsilon -x\epsilon
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
xg=\epsilon -x\epsilon -9
Tynnu 9 o'r ddwy ochr.
xg=-x\epsilon +\epsilon -9
Mae'r hafaliad yn y ffurf safonol.
\frac{xg}{x}=\frac{-x\epsilon +\epsilon -9}{x}
Rhannu’r ddwy ochr â x.
g=\frac{-x\epsilon +\epsilon -9}{x}
Mae rhannu â x yn dad-wneud lluosi â x.
\epsilon -x\epsilon -xg=9
Tynnu xg o'r ddwy ochr.
-x\epsilon -xg=9-\epsilon
Tynnu \epsilon o'r ddwy ochr.
\left(-\epsilon -g\right)x=9-\epsilon
Cyfuno pob term sy'n cynnwys x.
\left(-g-\epsilon \right)x=9-\epsilon
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(-g-\epsilon \right)x}{-g-\epsilon }=\frac{9-\epsilon }{-g-\epsilon }
Rhannu’r ddwy ochr â -\epsilon -g.
x=\frac{9-\epsilon }{-g-\epsilon }
Mae rhannu â -\epsilon -g yn dad-wneud lluosi â -\epsilon -g.
x=-\frac{9-\epsilon }{g+\epsilon }
Rhannwch -\epsilon +9 â -\epsilon -g.
9+xg=\epsilon -x\epsilon
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
xg=\epsilon -x\epsilon -9
Tynnu 9 o'r ddwy ochr.
xg=-x\epsilon +\epsilon -9
Mae'r hafaliad yn y ffurf safonol.
\frac{xg}{x}=\frac{-x\epsilon +\epsilon -9}{x}
Rhannu’r ddwy ochr â x.
g=\frac{-x\epsilon +\epsilon -9}{x}
Mae rhannu â x yn dad-wneud lluosi â x.
\epsilon -x\epsilon -xg=9
Tynnu xg o'r ddwy ochr.
-x\epsilon -xg=9-\epsilon
Tynnu \epsilon o'r ddwy ochr.
\left(-\epsilon -g\right)x=9-\epsilon
Cyfuno pob term sy'n cynnwys x.
\left(-g-\epsilon \right)x=9-\epsilon
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(-g-\epsilon \right)x}{-g-\epsilon }=\frac{9-\epsilon }{-g-\epsilon }
Rhannu’r ddwy ochr â -\epsilon -g.
x=\frac{9-\epsilon }{-g-\epsilon }
Mae rhannu â -\epsilon -g yn dad-wneud lluosi â -\epsilon -g.
x=-\frac{9-\epsilon }{g+\epsilon }
Rhannwch -\epsilon +9 â -\epsilon -g.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}