Datrys ar gyfer x (complex solution)
x=\frac{\sqrt{21413691138}+i\sqrt{383727960\sqrt{4578}-21413691138}}{9156}\approx 15.982325934+7.366910212i
x=\frac{-i\sqrt{383727960\sqrt{4578}-21413691138}+\sqrt{21413691138}}{9156}\approx 15.982325934-7.366910212i
Graff
Cwis
Quadratic Equation
5 problemau tebyg i:
\sqrt{ 4578 } { x }^{ 2 } - \sqrt{ 4677521 } x+31478=10523
Rhannu
Copïo i clipfwrdd
\sqrt{4578}x^{2}-\sqrt{4677521}x+31478-10523=0
Tynnu 10523 o'r ddwy ochr.
\sqrt{4578}x^{2}-\sqrt{4677521}x+20955=0
Tynnu 10523 o 31478 i gael 20955.
\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x+20955=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{\left(-\sqrt{4677521}\right)^{2}-4\sqrt{4578}\times 20955}}{2\sqrt{4578}}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch \sqrt{4578} am a, -\sqrt{4677521} am b, a 20955 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521-4\sqrt{4578}\times 20955}}{2\sqrt{4578}}
Sgwâr -\sqrt{4677521}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521+\left(-4\sqrt{4578}\right)\times 20955}}{2\sqrt{4578}}
Lluoswch -4 â \sqrt{4578}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521-83820\sqrt{4578}}}{2\sqrt{4578}}
Lluoswch -4\sqrt{4578} â 20955.
x=\frac{-\left(-\sqrt{4677521}\right)±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}}
Cymryd isradd 4677521-83820\sqrt{4578}.
x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}}
Gwrthwyneb -\sqrt{4677521} yw \sqrt{4677521}.
x=\frac{\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}}{2\sqrt{4578}}
Datryswch yr hafaliad x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}} pan fydd ± yn plws. Adio \sqrt{4677521} at i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}.
x=\frac{\sqrt{4578}\left(\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}\right)}{9156}
Rhannwch \sqrt{4677521}+i\sqrt{-4677521+83820\sqrt{4578}} â 2\sqrt{4578}.
x=\frac{-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}}{2\sqrt{4578}}
Datryswch yr hafaliad x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}} pan fydd ± yn minws. Tynnu i\sqrt{-\left(4677521-83820\sqrt{4578}\right)} o \sqrt{4677521}.
x=\frac{\sqrt{4578}\left(-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}\right)}{9156}
Rhannwch \sqrt{4677521}-i\sqrt{-4677521+83820\sqrt{4578}} â 2\sqrt{4578}.
x=\frac{\sqrt{4578}\left(\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}\right)}{9156} x=\frac{\sqrt{4578}\left(-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}\right)}{9156}
Mae’r hafaliad wedi’i ddatrys nawr.
\sqrt{4578}x^{2}-\sqrt{4677521}x=10523-31478
Tynnu 31478 o'r ddwy ochr.
\sqrt{4578}x^{2}-\sqrt{4677521}x=-20955
Tynnu 31478 o 10523 i gael -20955.
\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x=-20955
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
\frac{\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x}{\sqrt{4578}}=-\frac{20955}{\sqrt{4578}}
Rhannu’r ddwy ochr â \sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{4677521}}{\sqrt{4578}}\right)x=-\frac{20955}{\sqrt{4578}}
Mae rhannu â \sqrt{4578} yn dad-wneud lluosi â \sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x=-\frac{20955}{\sqrt{4578}}
Rhannwch -\sqrt{4677521} â \sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x=-\frac{6985\sqrt{4578}}{1526}
Rhannwch -20955 â \sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\left(-\frac{\sqrt{21413691138}}{9156}\right)^{2}=-\frac{6985\sqrt{4578}}{1526}+\left(-\frac{\sqrt{21413691138}}{9156}\right)^{2}
Rhannwch -\frac{\sqrt{21413691138}}{4578}, cyfernod y term x, â 2 i gael -\frac{\sqrt{21413691138}}{9156}. Yna ychwanegwch sgwâr -\frac{\sqrt{21413691138}}{9156} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\frac{4677521}{18312}=-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}
Sgwâr -\frac{\sqrt{21413691138}}{9156}.
\left(x-\frac{\sqrt{21413691138}}{9156}\right)^{2}=-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}
Ffactora x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\frac{4677521}{18312}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{\sqrt{21413691138}}{9156}\right)^{2}}=\sqrt{-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{\sqrt{21413691138}}{9156}=\frac{i\sqrt{383727960\sqrt{4578}-21413691138}}{9156} x-\frac{\sqrt{21413691138}}{9156}=-\frac{i\sqrt{383727960\sqrt{4578}-21413691138}}{9156}
Symleiddio.
x=\frac{\sqrt{21413691138}+i\sqrt{383727960\sqrt{4578}-21413691138}}{9156} x=\frac{-i\sqrt{383727960\sqrt{4578}-21413691138}+\sqrt{21413691138}}{9156}
Adio \frac{\sqrt{21413691138}}{9156} at ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}