Datrys ar gyfer y
\left\{\begin{matrix}y=\frac{1}{x^{2}}\text{, }&x>0\\y\geq 0\text{, }&x=0\end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}x=0\text{, }&y\geq 0\\x=\frac{1}{\sqrt{y}}\text{, }&y>0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
\frac{\sqrt{x^{4}}\sqrt{y}}{\sqrt{x^{4}}}=\frac{x}{\sqrt{x^{4}}}
Rhannu’r ddwy ochr â \sqrt{x^{4}}.
\sqrt{y}=\frac{x}{\sqrt{x^{4}}}
Mae rhannu â \sqrt{x^{4}} yn dad-wneud lluosi â \sqrt{x^{4}}.
\sqrt{y}=\frac{1}{x}
Rhannwch x â \sqrt{x^{4}}.
y=\frac{1}{x^{2}}
Sgwariwch ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}