Datrys ar gyfer X
X=\frac{2\sqrt{3}\left(3125000000000000x+24735304560274741\right)}{13622672400100515}
Datrys ar gyfer x
x=\frac{908178160006701\sqrt{3}X}{1250000000000000}-7.91529745928791712
Graff
Rhannu
Copïo i clipfwrdd
\sqrt{3} X - \frac{x - 4}{0.7265425280053608} = 16.4
Evaluate trigonometric functions in the problem
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}+\frac{-4}{0.7265425280053608}\right)=16.4
Rhannu pob term x-4 â 0.7265425280053608 i gael \frac{x}{0.7265425280053608}+\frac{-4}{0.7265425280053608}.
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}+\frac{-40000000000000000}{7265425280053608}\right)=16.4
Ehangu \frac{-4}{0.7265425280053608} drwy luosi'r rhifiadur a'r enwadur gyda 10000000000000000.
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701}\right)=16.4
Lleihau'r ffracsiwn \frac{-40000000000000000}{7265425280053608} i'r graddau lleiaf posib drwy dynnu a chanslo allan 8.
\sqrt{3}X-\frac{x}{0.7265425280053608}+\frac{5000000000000000}{908178160006701}=16.4
I ddod o hyd i wrthwyneb \frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701}, dewch o hyd i wrthwyneb pob term.
\sqrt{3}X+\frac{5000000000000000}{908178160006701}=16.4+\frac{x}{0.7265425280053608}
Ychwanegu \frac{x}{0.7265425280053608} at y ddwy ochr.
\sqrt{3}X=16.4+\frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701}
Tynnu \frac{5000000000000000}{908178160006701} o'r ddwy ochr.
\sqrt{3}X=\frac{49470609120549482}{4540890800033505}+\frac{x}{0.7265425280053608}
Tynnu \frac{5000000000000000}{908178160006701} o 16.4 i gael \frac{49470609120549482}{4540890800033505}.
\sqrt{3}X=\frac{1250000000000000x}{908178160006701}+\frac{49470609120549482}{4540890800033505}
Mae'r hafaliad yn y ffurf safonol.
\frac{\sqrt{3}X}{\sqrt{3}}=\frac{\frac{1250000000000000x}{908178160006701}+\frac{49470609120549482}{4540890800033505}}{\sqrt{3}}
Rhannu’r ddwy ochr â \sqrt{3}.
X=\frac{\frac{1250000000000000x}{908178160006701}+\frac{49470609120549482}{4540890800033505}}{\sqrt{3}}
Mae rhannu â \sqrt{3} yn dad-wneud lluosi â \sqrt{3}.
X=\frac{2\sqrt{3}\left(3125000000000000x+24735304560274741\right)}{13622672400100515}
Rhannwch \frac{49470609120549482}{4540890800033505}+\frac{1250000000000000x}{908178160006701} â \sqrt{3}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}