Enrhifo
\frac{\sqrt{100000010}}{10000}-1\approx 0.00000005
Rhannu
Copïo i clipfwrdd
\sqrt{1+\frac{1}{10000000}}-1
Cyfrifo 10 i bŵer -7 a chael \frac{1}{10000000}.
\sqrt{\frac{10000001}{10000000}}-1
Adio 1 a \frac{1}{10000000} i gael \frac{10000001}{10000000}.
\frac{\sqrt{10000001}}{\sqrt{10000000}}-1
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{10000001}{10000000}} fel rhaniad ail israddau \frac{\sqrt{10000001}}{\sqrt{10000000}}.
\frac{\sqrt{10000001}}{1000\sqrt{10}}-1
Ffactora 10000000=1000^{2}\times 10. Ailysgrifennu ail isradd y lluoswm \sqrt{1000^{2}\times 10} fel lluoswm ail israddau \sqrt{1000^{2}}\sqrt{10}. Cymryd isradd 1000^{2}.
\frac{\sqrt{10000001}\sqrt{10}}{1000\left(\sqrt{10}\right)^{2}}-1
Mae'n rhesymoli enwadur \frac{\sqrt{10000001}}{1000\sqrt{10}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{10}.
\frac{\sqrt{10000001}\sqrt{10}}{1000\times 10}-1
Sgwâr \sqrt{10} yw 10.
\frac{\sqrt{100000010}}{1000\times 10}-1
I luosi \sqrt{10000001} a \sqrt{10}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{\sqrt{100000010}}{10000}-1
Lluosi 1000 a 10 i gael 10000.
\frac{\sqrt{100000010}}{10000}-\frac{10000}{10000}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{10000}{10000}.
\frac{\sqrt{100000010}-10000}{10000}
Gan fod gan \frac{\sqrt{100000010}}{10000} a \frac{10000}{10000} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}