Datrys ar gyfer x
x=\frac{\sqrt{15}+30}{120}\approx 0.282274861
Graff
Rhannu
Copïo i clipfwrdd
\frac{\sqrt{3}}{\sqrt{5}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{3}{5}} fel rhaniad ail israddau \frac{\sqrt{3}}{\sqrt{5}}.
\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Mae'n rhesymoli enwadur \frac{\sqrt{3}}{\sqrt{5}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{5}.
\frac{\sqrt{3}\sqrt{5}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Sgwâr \sqrt{5} yw 5.
\frac{\sqrt{15}}{5}\left(x+1\right)+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
I luosi \sqrt{3} a \sqrt{5}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{\sqrt{15}\left(x+1\right)}{5}+\sqrt{\frac{5}{3}}\left(x-1\right)=\frac{1}{15}
Mynegwch \frac{\sqrt{15}}{5}\left(x+1\right) fel ffracsiwn unigol.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}}{\sqrt{3}}\left(x-1\right)=\frac{1}{15}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{5}{3}} fel rhaniad ail israddau \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(x-1\right)=\frac{1}{15}
Mae'n rhesymoli enwadur \frac{\sqrt{5}}{\sqrt{3}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{3}.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{5}\sqrt{3}}{3}\left(x-1\right)=\frac{1}{15}
Sgwâr \sqrt{3} yw 3.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}}{3}\left(x-1\right)=\frac{1}{15}
I luosi \sqrt{5} a \sqrt{3}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{\sqrt{15}\left(x+1\right)}{5}+\frac{\sqrt{15}\left(x-1\right)}{3}=\frac{1}{15}
Mynegwch \frac{\sqrt{15}}{3}\left(x-1\right) fel ffracsiwn unigol.
\frac{3\sqrt{15}\left(x+1\right)}{15}+\frac{5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin 5 a 3 yw 15. Lluoswch \frac{\sqrt{15}\left(x+1\right)}{5} â \frac{3}{3}. Lluoswch \frac{\sqrt{15}\left(x-1\right)}{3} â \frac{5}{5}.
\frac{3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right)}{15}=\frac{1}{15}
Gan fod gan \frac{3\sqrt{15}\left(x+1\right)}{15} a \frac{5\sqrt{15}\left(x-1\right)}{15} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}}{15}=\frac{1}{15}
Gwnewch y gwaith lluosi yn 3\sqrt{15}\left(x+1\right)+5\sqrt{15}\left(x-1\right).
\frac{8\sqrt{15}x-2\sqrt{15}}{15}=\frac{1}{15}
Cyfuno termau tebyg yn 3\sqrt{15}x+3\sqrt{15}+5\sqrt{15}x-5\sqrt{15}.
8\sqrt{15}x-2\sqrt{15}=\frac{1}{15}\times 15
Lluosi’r ddwy ochr â 15.
8\sqrt{15}x-2\sqrt{15}=1
Canslo 15 a 15.
8\sqrt{15}x=1+2\sqrt{15}
Ychwanegu 2\sqrt{15} at y ddwy ochr.
8\sqrt{15}x=2\sqrt{15}+1
Mae'r hafaliad yn y ffurf safonol.
\frac{8\sqrt{15}x}{8\sqrt{15}}=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Rhannu’r ddwy ochr â 8\sqrt{15}.
x=\frac{2\sqrt{15}+1}{8\sqrt{15}}
Mae rhannu â 8\sqrt{15} yn dad-wneud lluosi â 8\sqrt{15}.
x=\frac{\sqrt{15}}{120}+\frac{1}{4}
Rhannwch 1+2\sqrt{15} â 8\sqrt{15}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}