Datrys ar gyfer σ_x
\sigma _{x}=\frac{4}{3}
\sigma _{x}=-\frac{4}{3}
Datrys ar gyfer x (complex solution)
x\in \mathrm{C}
\sigma _{x}=\frac{4}{3}\text{ or }\sigma _{x}=-\frac{4}{3}
Datrys ar gyfer x
x\in \mathrm{R}
|\sigma _{x}|=\frac{4}{3}
Graff
Rhannu
Copïo i clipfwrdd
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tynnu 0 o -2 i gael -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Cyfrifo -2 i bŵer 2 a chael 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}x
Lluosi 4 a \frac{4}{9} i gael \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}x
Lluosi 0 a 0 i gael 0.
\sigma _{x}^{2}=\frac{16}{9}+0x
Cyfrifo 0 i bŵer 2 a chael 0.
\sigma _{x}^{2}=\frac{16}{9}+0
Mae lluosi unrhyw beth â sero yn rhoi sero.
\sigma _{x}^{2}=\frac{16}{9}
Adio \frac{16}{9} a 0 i gael \frac{16}{9}.
\sigma _{x}=\frac{4}{3} \sigma _{x}=-\frac{4}{3}
Cymryd isradd dwy ochr yr hafaliad.
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Tynnu 0 o -2 i gael -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Cyfrifo -2 i bŵer 2 a chael 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}x
Lluosi 4 a \frac{4}{9} i gael \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}x
Lluosi 0 a 0 i gael 0.
\sigma _{x}^{2}=\frac{16}{9}+0x
Cyfrifo 0 i bŵer 2 a chael 0.
\sigma _{x}^{2}=\frac{16}{9}+0
Mae lluosi unrhyw beth â sero yn rhoi sero.
\sigma _{x}^{2}=\frac{16}{9}
Adio \frac{16}{9} a 0 i gael \frac{16}{9}.
\sigma _{x}^{2}-\frac{16}{9}=0
Tynnu \frac{16}{9} o'r ddwy ochr.
\sigma _{x}=\frac{0±\sqrt{0^{2}-4\left(-\frac{16}{9}\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 0 am b, a -\frac{16}{9} am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\sigma _{x}=\frac{0±\sqrt{-4\left(-\frac{16}{9}\right)}}{2}
Sgwâr 0.
\sigma _{x}=\frac{0±\sqrt{\frac{64}{9}}}{2}
Lluoswch -4 â -\frac{16}{9}.
\sigma _{x}=\frac{0±\frac{8}{3}}{2}
Cymryd isradd \frac{64}{9}.
\sigma _{x}=\frac{4}{3}
Datryswch yr hafaliad \sigma _{x}=\frac{0±\frac{8}{3}}{2} pan fydd ± yn plws.
\sigma _{x}=-\frac{4}{3}
Datryswch yr hafaliad \sigma _{x}=\frac{0±\frac{8}{3}}{2} pan fydd ± yn minws.
\sigma _{x}=\frac{4}{3} \sigma _{x}=-\frac{4}{3}
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}