Neidio i'r prif gynnwys
Datrys ar gyfer N
Tick mark Image
Datrys ar gyfer C
Tick mark Image

Rhannu

ϕ=555120NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Lluosi 4500 a 123.36 i gael 555120.
ϕ=555120NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Cyfrifo 10 i bŵer -4 a chael \frac{1}{10000}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Lluosi 555120 a \frac{1}{10000} i gael \frac{6939}{125}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
Cyfrifo 10 i bŵer -2 a chael \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{122}{2}\times 10^{-2}m}))
Lluosi 18.5 a \frac{1}{100} i gael \frac{37}{200}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times 10^{-2}m}))
Rhannu 122 â 2 i gael 61.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times \frac{1}{100}m}))
Cyfrifo 10 i bŵer -2 a chael \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{61}{100}m}))
Lluosi 61 a \frac{1}{100} i gael \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}}{\frac{61}{100}}))
Canslo m yn y rhifiadur a'r enwadur.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{200}\times \frac{100}{61}))
Rhannwch \frac{37}{200} â \frac{61}{100} drwy luosi \frac{37}{200} â chilydd \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))
Lluosi \frac{37}{200} a \frac{100}{61} i gael \frac{37}{122}.
\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))=ϕ
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N=ϕ
Mae'r hafaliad yn y ffurf safonol.
\frac{\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Rhannu’r ddwy ochr â \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Mae rhannu â \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})) yn dad-wneud lluosi â \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{125\sqrt{16253}Cϕ}{846558m^{2}}
Rhannwch ϕ â \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).