Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

y+x=-8
Ystyriwch yr ail hafaliad. Ychwanegu x at y ddwy ochr.
x-y=4,x+y=-8
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
x-y=4
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
x=y+4
Adio y at ddwy ochr yr hafaliad.
y+4+y=-8
Amnewid y+4 am x yn yr hafaliad arall, x+y=-8.
2y+4=-8
Adio y at y.
2y=-12
Tynnu 4 o ddwy ochr yr hafaliad.
y=-6
Rhannu’r ddwy ochr â 2.
x=-6+4
Cyfnewidiwch -6 am y yn x=y+4. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-2
Adio 4 at -6.
x=-2,y=-6
Mae’r system wedi’i datrys nawr.
y+x=-8
Ystyriwch yr ail hafaliad. Ychwanegu x at y ddwy ochr.
x-y=4,x+y=-8
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-8\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\-8\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\-8\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4+\frac{1}{2}\left(-8\right)\\-\frac{1}{2}\times 4+\frac{1}{2}\left(-8\right)\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-6\end{matrix}\right)
Gwneud y symiau.
x=-2,y=-6
Echdynnu yr elfennau matrics x a y.
y+x=-8
Ystyriwch yr ail hafaliad. Ychwanegu x at y ddwy ochr.
x-y=4,x+y=-8
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
x-x-y-y=4+8
Tynnwch x+y=-8 o x-y=4 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-y-y=4+8
Adio x at -x. Mae'r termau x a -x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-2y=4+8
Adio -y at -y.
-2y=12
Adio 4 at 8.
y=-6
Rhannu’r ddwy ochr â -2.
x-6=-8
Cyfnewidiwch -6 am y yn x+y=-8. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-2
Adio 6 at ddwy ochr yr hafaliad.
x=-2,y=-6
Mae’r system wedi’i datrys nawr.