Datrys ar gyfer x, y
y = \frac{83317}{1296} = 64\frac{373}{1296} \approx 64.287808642
Graff
Rhannu
Copïo i clipfwrdd
-54x=-117
Ystyriwch yr hafaliad cyntaf. Tynnu 117 o'r ddwy ochr. Mae tynnu unrhyw beth o sero’n rhoi negydd y swm.
x=\frac{-117}{-54}
Rhannu’r ddwy ochr â -54.
x=\frac{13}{6}
Lleihau'r ffracsiwn \frac{-117}{-54} i'r graddau lleiaf posib drwy dynnu a chanslo allan -9.
y=\left(\frac{13}{6}\right)^{4}-6\times \left(\frac{13}{6}\right)^{3}+22\times \left(\frac{13}{6}\right)^{2}
Ystyriwch yr ail hafaliad. Mewnosod y gwerthoedd sy’n hysbys i’r hafaliad.
y=\frac{28561}{1296}-6\times \left(\frac{13}{6}\right)^{3}+22\times \left(\frac{13}{6}\right)^{2}
Cyfrifo \frac{13}{6} i bŵer 4 a chael \frac{28561}{1296}.
y=\frac{28561}{1296}-6\times \frac{2197}{216}+22\times \left(\frac{13}{6}\right)^{2}
Cyfrifo \frac{13}{6} i bŵer 3 a chael \frac{2197}{216}.
y=\frac{28561}{1296}-\frac{2197}{36}+22\times \left(\frac{13}{6}\right)^{2}
Lluosi -6 a \frac{2197}{216} i gael -\frac{2197}{36}.
y=-\frac{50531}{1296}+22\times \left(\frac{13}{6}\right)^{2}
Tynnu \frac{2197}{36} o \frac{28561}{1296} i gael -\frac{50531}{1296}.
y=-\frac{50531}{1296}+22\times \frac{169}{36}
Cyfrifo \frac{13}{6} i bŵer 2 a chael \frac{169}{36}.
y=-\frac{50531}{1296}+\frac{1859}{18}
Lluosi 22 a \frac{169}{36} i gael \frac{1859}{18}.
y=\frac{83317}{1296}
Adio -\frac{50531}{1296} a \frac{1859}{18} i gael \frac{83317}{1296}.
x=\frac{13}{6} y=\frac{83317}{1296}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}