Datrys ar gyfer x, y (complex solution)
x=\frac{\sqrt{119}i}{35}+\frac{12}{5}\approx 2.4+0.311677489i\text{, }y=-\frac{3\sqrt{119}i}{35}-\frac{1}{5}\approx -0.2-0.935032467i
x=-\frac{\sqrt{119}i}{35}+\frac{12}{5}\approx 2.4-0.311677489i\text{, }y=\frac{3\sqrt{119}i}{35}-\frac{1}{5}\approx -0.2+0.935032467i
Graff
Rhannu
Copïo i clipfwrdd
y+3x=7
Ystyriwch yr ail hafaliad. Ychwanegu 3x at y ddwy ochr.
y=-3x+7
Tynnu 3x o ddwy ochr yr hafaliad.
x^{2}-4\left(-3x+7\right)^{2}=9
Amnewid -3x+7 am y yn yr hafaliad arall, x^{2}-4y^{2}=9.
x^{2}-4\left(9x^{2}-42x+49\right)=9
Sgwâr -3x+7.
x^{2}-36x^{2}+168x-196=9
Lluoswch -4 â 9x^{2}-42x+49.
-35x^{2}+168x-196=9
Adio x^{2} at -36x^{2}.
-35x^{2}+168x-205=0
Tynnu 9 o ddwy ochr yr hafaliad.
x=\frac{-168±\sqrt{168^{2}-4\left(-35\right)\left(-205\right)}}{2\left(-35\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1-4\left(-3\right)^{2} am a, -4\times 7\left(-3\right)\times 2 am b, a -205 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-168±\sqrt{28224-4\left(-35\right)\left(-205\right)}}{2\left(-35\right)}
Sgwâr -4\times 7\left(-3\right)\times 2.
x=\frac{-168±\sqrt{28224+140\left(-205\right)}}{2\left(-35\right)}
Lluoswch -4 â 1-4\left(-3\right)^{2}.
x=\frac{-168±\sqrt{28224-28700}}{2\left(-35\right)}
Lluoswch 140 â -205.
x=\frac{-168±\sqrt{-476}}{2\left(-35\right)}
Adio 28224 at -28700.
x=\frac{-168±2\sqrt{119}i}{2\left(-35\right)}
Cymryd isradd -476.
x=\frac{-168±2\sqrt{119}i}{-70}
Lluoswch 2 â 1-4\left(-3\right)^{2}.
x=\frac{-168+2\sqrt{119}i}{-70}
Datryswch yr hafaliad x=\frac{-168±2\sqrt{119}i}{-70} pan fydd ± yn plws. Adio -168 at 2i\sqrt{119}.
x=-\frac{\sqrt{119}i}{35}+\frac{12}{5}
Rhannwch -168+2i\sqrt{119} â -70.
x=\frac{-2\sqrt{119}i-168}{-70}
Datryswch yr hafaliad x=\frac{-168±2\sqrt{119}i}{-70} pan fydd ± yn minws. Tynnu 2i\sqrt{119} o -168.
x=\frac{\sqrt{119}i}{35}+\frac{12}{5}
Rhannwch -168-2i\sqrt{119} â -70.
y=-3\left(-\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7
Mae dau ateb ar gyfer x: \frac{12}{5}-\frac{i\sqrt{119}}{35} a \frac{12}{5}+\frac{i\sqrt{119}}{35}. Amnewidiwch \frac{12}{5}-\frac{i\sqrt{119}}{35} am x yn yr hafaliad y=-3x+7 i ddod o hyd i'r ateb cyfatebol ar gyfer y sy'n bodloni'r ddau hafaliad.
y=-3\left(\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7
Nawr, amnewidiwch \frac{12}{5}+\frac{i\sqrt{119}}{35} am x yn yr hafaliad y=-3x+7 a’i ddatrys i ganfod yr ateb cyfatebol ar gyfer y sy'n bodloni'r ddau hafaliad.
y=-3\left(-\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7,x=-\frac{\sqrt{119}i}{35}+\frac{12}{5}\text{ or }y=-3\left(\frac{\sqrt{119}i}{35}+\frac{12}{5}\right)+7,x=\frac{\sqrt{119}i}{35}+\frac{12}{5}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}