Datrys ar gyfer x, y
x=-561
y=284
Graff
Rhannu
Copïo i clipfwrdd
x+2y=7,-x-y=277
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
x+2y=7
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
x=-2y+7
Tynnu 2y o ddwy ochr yr hafaliad.
-\left(-2y+7\right)-y=277
Amnewid -2y+7 am x yn yr hafaliad arall, -x-y=277.
2y-7-y=277
Lluoswch -1 â -2y+7.
y-7=277
Adio 2y at -y.
y=284
Adio 7 at ddwy ochr yr hafaliad.
x=-2\times 284+7
Cyfnewidiwch 284 am y yn x=-2y+7. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-568+7
Lluoswch -2 â 284.
x=-561
Adio 7 at -568.
x=-561,y=284
Mae’r system wedi’i datrys nawr.
x+2y=7,-x-y=277
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\277\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}1&2\\-1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\left(-1\right)}&-\frac{2}{-1-2\left(-1\right)}\\-\frac{-1}{-1-2\left(-1\right)}&\frac{1}{-1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\277\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}7\\277\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7-2\times 277\\7+277\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-561\\284\end{matrix}\right)
Gwneud y symiau.
x=-561,y=284
Echdynnu yr elfennau matrics x a y.
x+2y=7,-x-y=277
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
-x-2y=-7,-x-y=277
I wneud x a -x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â -1 a holl dermau naill ochr yr ail â 1.
-x+x-2y+y=-7-277
Tynnwch -x-y=277 o -x-2y=-7 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-2y+y=-7-277
Adio -x at x. Mae'r termau -x a x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-y=-7-277
Adio -2y at y.
-y=-284
Adio -7 at -277.
y=284
Rhannu’r ddwy ochr â -1.
-x-284=277
Cyfnewidiwch 284 am y yn -x-y=277. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
-x=561
Adio 284 at ddwy ochr yr hafaliad.
x=-561
Rhannu’r ddwy ochr â -1.
x=-561,y=284
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}