Datrys ar gyfer x, y
x=\frac{3m^{2}+2m+1}{m^{2}+1}
y=\frac{3m^{2}-2m+1}{m^{2}+1}
Graff
Rhannu
Copïo i clipfwrdd
mx-y+1-3m=0,x+my-3m-1=0
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
mx-y+1-3m=0
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
mx-y=3m-1
Tynnu -3m+1 o ddwy ochr yr hafaliad.
mx=y+3m-1
Adio y at ddwy ochr yr hafaliad.
x=\frac{1}{m}\left(y+3m-1\right)
Rhannu’r ddwy ochr â m.
x=\frac{1}{m}y+3-\frac{1}{m}
Lluoswch \frac{1}{m} â y+3m-1.
\frac{1}{m}y+3-\frac{1}{m}+my-3m-1=0
Amnewid \frac{y-1+3m}{m} am x yn yr hafaliad arall, x+my-3m-1=0.
\left(m+\frac{1}{m}\right)y+3-\frac{1}{m}-3m-1=0
Adio \frac{y}{m} at my.
\left(m+\frac{1}{m}\right)y-3m+2-\frac{1}{m}=0
Adio 3-\frac{1}{m} at -3m-1.
\left(m+\frac{1}{m}\right)y=3m-2+\frac{1}{m}
Tynnu 2-\frac{1}{m}-3m o ddwy ochr yr hafaliad.
y=\frac{3m^{2}-2m+1}{m^{2}+1}
Rhannu’r ddwy ochr â m+\frac{1}{m}.
x=\frac{1}{m}\times \frac{3m^{2}-2m+1}{m^{2}+1}+3-\frac{1}{m}
Cyfnewidiwch \frac{3m^{2}+1-2m}{m^{2}+1} am y yn x=\frac{1}{m}y+3-\frac{1}{m}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{3m^{2}-2m+1}{m\left(m^{2}+1\right)}+3-\frac{1}{m}
Lluoswch \frac{1}{m} â \frac{3m^{2}+1-2m}{m^{2}+1}.
x=\frac{3m^{2}+2m+1}{m^{2}+1}
Adio 3-\frac{1}{m} at \frac{3m^{2}+1-2m}{m\left(m^{2}+1\right)}.
x=\frac{3m^{2}+2m+1}{m^{2}+1},y=\frac{3m^{2}-2m+1}{m^{2}+1}
Mae’r system wedi’i datrys nawr.
mx-y+1-3m=0,x+my-3m-1=0
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}m&-1\\1&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}m&-1\\1&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}m&-1\\1&m\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}m&-1\\1&m\end{matrix}\right))\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{mm-\left(-1\right)}&-\frac{-1}{mm-\left(-1\right)}\\-\frac{1}{mm-\left(-1\right)}&\frac{m}{mm-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{m^{2}+1}&\frac{1}{m^{2}+1}\\-\frac{1}{m^{2}+1}&\frac{m}{m^{2}+1}\end{matrix}\right)\left(\begin{matrix}3m-1\\3m+1\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{m^{2}+1}\left(3m-1\right)+\frac{1}{m^{2}+1}\left(3m+1\right)\\\left(-\frac{1}{m^{2}+1}\right)\left(3m-1\right)+\frac{m}{m^{2}+1}\left(3m+1\right)\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3m^{2}+2m+1}{m^{2}+1}\\\frac{3m^{2}-2m+1}{m^{2}+1}\end{matrix}\right)
Gwneud y symiau.
x=\frac{3m^{2}+2m+1}{m^{2}+1},y=\frac{3m^{2}-2m+1}{m^{2}+1}
Echdynnu yr elfennau matrics x a y.
mx-y+1-3m=0,x+my-3m-1=0
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
mx-y+1-3m=0,mx+mmy+m\left(-3m-1\right)=0
I wneud mx a x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 1 a holl dermau naill ochr yr ail â m.
mx-y+1-3m=0,mx+m^{2}y-m\left(3m+1\right)=0
Symleiddio.
mx+\left(-m\right)x-y+\left(-m^{2}\right)y+1-3m+m\left(3m+1\right)=0
Tynnwch mx+m^{2}y-m\left(3m+1\right)=0 o mx-y+1-3m=0 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-y+\left(-m^{2}\right)y+1-3m+m\left(3m+1\right)=0
Adio mx at -mx. Mae'r termau mx a -mx yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
\left(-m^{2}-1\right)y+1-3m+m\left(3m+1\right)=0
Adio -y at -m^{2}y.
\left(-m^{2}-1\right)y+3m^{2}-2m+1=0
Adio -3m+1 at m\left(3m+1\right).
\left(-m^{2}-1\right)y=-3m^{2}+2m-1
Tynnu -2m+1+3m^{2} o ddwy ochr yr hafaliad.
y=-\frac{-3m^{2}+2m-1}{m^{2}+1}
Rhannu’r ddwy ochr â -1-m^{2}.
x+m\left(-\frac{-3m^{2}+2m-1}{m^{2}+1}\right)-3m-1=0
Cyfnewidiwch -\frac{2m-1-3m^{2}}{1+m^{2}} am y yn x+my-3m-1=0. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x-\frac{m\left(-3m^{2}+2m-1\right)}{m^{2}+1}-3m-1=0
Lluoswch m â -\frac{2m-1-3m^{2}}{1+m^{2}}.
x-\frac{3m^{2}+2m+1}{m^{2}+1}=0
Adio -\frac{m\left(2m-1-3m^{2}\right)}{1+m^{2}} at -3m-1.
x=\frac{3m^{2}+2m+1}{m^{2}+1}
Adio \frac{2m+3m^{2}+1}{1+m^{2}} at ddwy ochr yr hafaliad.
x=\frac{3m^{2}+2m+1}{m^{2}+1},y=-\frac{-3m^{2}+2m-1}{m^{2}+1}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}