Datrys ar gyfer A, B
A=\frac{1}{3}\approx 0.333333333
B = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Rhannu
Copïo i clipfwrdd
A+B+1=0,A-2B=3
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
A+B+1=0
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer A drwy ynysu A ar ochr chwith yr arwydd hafal.
A+B=-1
Tynnu 1 o ddwy ochr yr hafaliad.
A=-B-1
Tynnu B o ddwy ochr yr hafaliad.
-B-1-2B=3
Amnewid -B-1 am A yn yr hafaliad arall, A-2B=3.
-3B-1=3
Adio -B at -2B.
-3B=4
Adio 1 at ddwy ochr yr hafaliad.
B=-\frac{4}{3}
Rhannu’r ddwy ochr â -3.
A=-\left(-\frac{4}{3}\right)-1
Cyfnewidiwch -\frac{4}{3} am B yn A=-B-1. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer A yn uniongyrchol.
A=\frac{4}{3}-1
Lluoswch -1 â -\frac{4}{3}.
A=\frac{1}{3}
Adio -1 at \frac{4}{3}.
A=\frac{1}{3},B=-\frac{4}{3}
Mae’r system wedi’i datrys nawr.
A+B+1=0,A-2B=3
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}1&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-1\right)+\frac{1}{3}\times 3\\\frac{1}{3}\left(-1\right)-\frac{1}{3}\times 3\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\-\frac{4}{3}\end{matrix}\right)
Gwneud y symiau.
A=\frac{1}{3},B=-\frac{4}{3}
Echdynnu yr elfennau matrics A a B.
A+B+1=0,A-2B=3
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
A-A+B+2B+1=-3
Tynnwch A-2B=3 o A+B+1=0 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
B+2B+1=-3
Adio A at -A. Mae'r termau A a -A yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
3B+1=-3
Adio B at 2B.
3B=-4
Tynnu 1 o ddwy ochr yr hafaliad.
B=-\frac{4}{3}
Rhannu’r ddwy ochr â 3.
A-2\left(-\frac{4}{3}\right)=3
Cyfnewidiwch -\frac{4}{3} am B yn A-2B=3. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer A yn uniongyrchol.
A+\frac{8}{3}=3
Lluoswch -2 â -\frac{4}{3}.
A=\frac{1}{3}
Tynnu \frac{8}{3} o ddwy ochr yr hafaliad.
A=\frac{1}{3},B=-\frac{4}{3}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}