Datrys ar gyfer x, y
x=3
y=2
Graff
Rhannu
Copïo i clipfwrdd
5x-y=13,2x+3y=12
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
5x-y=13
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
5x=y+13
Adio y at ddwy ochr yr hafaliad.
x=\frac{1}{5}\left(y+13\right)
Rhannu’r ddwy ochr â 5.
x=\frac{1}{5}y+\frac{13}{5}
Lluoswch \frac{1}{5} â y+13.
2\left(\frac{1}{5}y+\frac{13}{5}\right)+3y=12
Amnewid \frac{13+y}{5} am x yn yr hafaliad arall, 2x+3y=12.
\frac{2}{5}y+\frac{26}{5}+3y=12
Lluoswch 2 â \frac{13+y}{5}.
\frac{17}{5}y+\frac{26}{5}=12
Adio \frac{2y}{5} at 3y.
\frac{17}{5}y=\frac{34}{5}
Tynnu \frac{26}{5} o ddwy ochr yr hafaliad.
y=2
Rhannu dwy ochr hafaliad â \frac{17}{5}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=\frac{1}{5}\times 2+\frac{13}{5}
Cyfnewidiwch 2 am y yn x=\frac{1}{5}y+\frac{13}{5}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{2+13}{5}
Lluoswch \frac{1}{5} â 2.
x=3
Adio \frac{13}{5} at \frac{2}{5} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=3,y=2
Mae’r system wedi’i datrys nawr.
5x-y=13,2x+3y=12
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\12\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}5&-1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&3\end{matrix}\right))\left(\begin{matrix}13\\12\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-2\right)}&-\frac{-1}{5\times 3-\left(-2\right)}\\-\frac{2}{5\times 3-\left(-2\right)}&\frac{5}{5\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{1}{17}\\-\frac{2}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}13\\12\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 13+\frac{1}{17}\times 12\\-\frac{2}{17}\times 13+\frac{5}{17}\times 12\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Gwneud y symiau.
x=3,y=2
Echdynnu yr elfennau matrics x a y.
5x-y=13,2x+3y=12
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
2\times 5x+2\left(-1\right)y=2\times 13,5\times 2x+5\times 3y=5\times 12
I wneud 5x a 2x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 2 a holl dermau naill ochr yr ail â 5.
10x-2y=26,10x+15y=60
Symleiddio.
10x-10x-2y-15y=26-60
Tynnwch 10x+15y=60 o 10x-2y=26 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-2y-15y=26-60
Adio 10x at -10x. Mae'r termau 10x a -10x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-17y=26-60
Adio -2y at -15y.
-17y=-34
Adio 26 at -60.
y=2
Rhannu’r ddwy ochr â -17.
2x+3\times 2=12
Cyfnewidiwch 2 am y yn 2x+3y=12. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
2x+6=12
Lluoswch 3 â 2.
2x=6
Tynnu 6 o ddwy ochr yr hafaliad.
x=3
Rhannu’r ddwy ochr â 2.
x=3,y=2
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}