Datrys ar gyfer x, y
x=\frac{12}{53}\approx 0.226415094
y=\frac{1}{53}\approx 0.018867925
Graff
Rhannu
Copïo i clipfwrdd
4x+5y=1,5x-7y=1
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
4x+5y=1
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
4x=-5y+1
Tynnu 5y o ddwy ochr yr hafaliad.
x=\frac{1}{4}\left(-5y+1\right)
Rhannu’r ddwy ochr â 4.
x=-\frac{5}{4}y+\frac{1}{4}
Lluoswch \frac{1}{4} â -5y+1.
5\left(-\frac{5}{4}y+\frac{1}{4}\right)-7y=1
Amnewid \frac{-5y+1}{4} am x yn yr hafaliad arall, 5x-7y=1.
-\frac{25}{4}y+\frac{5}{4}-7y=1
Lluoswch 5 â \frac{-5y+1}{4}.
-\frac{53}{4}y+\frac{5}{4}=1
Adio -\frac{25y}{4} at -7y.
-\frac{53}{4}y=-\frac{1}{4}
Tynnu \frac{5}{4} o ddwy ochr yr hafaliad.
y=\frac{1}{53}
Rhannu dwy ochr hafaliad â -\frac{53}{4}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=-\frac{5}{4}\times \frac{1}{53}+\frac{1}{4}
Cyfnewidiwch \frac{1}{53} am y yn x=-\frac{5}{4}y+\frac{1}{4}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-\frac{5}{212}+\frac{1}{4}
Lluoswch -\frac{5}{4} â \frac{1}{53} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur. Yna, dylech leihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{12}{53}
Adio \frac{1}{4} at -\frac{5}{212} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{12}{53},y=\frac{1}{53}
Mae’r system wedi’i datrys nawr.
4x+5y=1,5x-7y=1
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}4&5\\5&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}4&5\\5&-7\end{matrix}\right))\left(\begin{matrix}4&5\\5&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}4&5\\5&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4\left(-7\right)-5\times 5}&-\frac{5}{4\left(-7\right)-5\times 5}\\-\frac{5}{4\left(-7\right)-5\times 5}&\frac{4}{4\left(-7\right)-5\times 5}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{53}&\frac{5}{53}\\\frac{5}{53}&-\frac{4}{53}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7+5}{53}\\\frac{5-4}{53}\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{53}\\\frac{1}{53}\end{matrix}\right)
Gwneud y symiau.
x=\frac{12}{53},y=\frac{1}{53}
Echdynnu yr elfennau matrics x a y.
4x+5y=1,5x-7y=1
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
5\times 4x+5\times 5y=5,4\times 5x+4\left(-7\right)y=4
I wneud 4x a 5x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 5 a holl dermau naill ochr yr ail â 4.
20x+25y=5,20x-28y=4
Symleiddio.
20x-20x+25y+28y=5-4
Tynnwch 20x-28y=4 o 20x+25y=5 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
25y+28y=5-4
Adio 20x at -20x. Mae'r termau 20x a -20x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
53y=5-4
Adio 25y at 28y.
53y=1
Adio 5 at -4.
y=\frac{1}{53}
Rhannu’r ddwy ochr â 53.
5x-7\times \frac{1}{53}=1
Cyfnewidiwch \frac{1}{53} am y yn 5x-7y=1. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
5x-\frac{7}{53}=1
Lluoswch -7 â \frac{1}{53}.
5x=\frac{60}{53}
Adio \frac{7}{53} at ddwy ochr yr hafaliad.
x=\frac{12}{53}
Rhannu’r ddwy ochr â 5.
x=\frac{12}{53},y=\frac{1}{53}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}