Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

3x+2y=12,x+y=5
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
3x+2y=12
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
3x=-2y+12
Tynnu 2y o ddwy ochr yr hafaliad.
x=\frac{1}{3}\left(-2y+12\right)
Rhannu’r ddwy ochr â 3.
x=-\frac{2}{3}y+4
Lluoswch \frac{1}{3} â -2y+12.
-\frac{2}{3}y+4+y=5
Amnewid -\frac{2y}{3}+4 am x yn yr hafaliad arall, x+y=5.
\frac{1}{3}y+4=5
Adio -\frac{2y}{3} at y.
\frac{1}{3}y=1
Tynnu 4 o ddwy ochr yr hafaliad.
y=3
Lluosi’r ddwy ochr â 3.
x=-\frac{2}{3}\times 3+4
Cyfnewidiwch 3 am y yn x=-\frac{2}{3}y+4. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-2+4
Lluoswch -\frac{2}{3} â 3.
x=2
Adio 4 at -2.
x=2,y=3
Mae’r system wedi’i datrys nawr.
3x+2y=12,x+y=5
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\5\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}3&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{2}{3-2}\\-\frac{1}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}12\\5\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-2\\-1&3\end{matrix}\right)\left(\begin{matrix}12\\5\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12-2\times 5\\-12+3\times 5\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Gwneud y symiau.
x=2,y=3
Echdynnu yr elfennau matrics x a y.
3x+2y=12,x+y=5
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
3x+2y=12,3x+3y=3\times 5
I wneud 3x a x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 1 a holl dermau naill ochr yr ail â 3.
3x+2y=12,3x+3y=15
Symleiddio.
3x-3x+2y-3y=12-15
Tynnwch 3x+3y=15 o 3x+2y=12 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
2y-3y=12-15
Adio 3x at -3x. Mae'r termau 3x a -3x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-y=12-15
Adio 2y at -3y.
-y=-3
Adio 12 at -15.
y=3
Rhannu’r ddwy ochr â -1.
x+3=5
Cyfnewidiwch 3 am y yn x+y=5. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=2
Tynnu 3 o ddwy ochr yr hafaliad.
x=2,y=3
Mae’r system wedi’i datrys nawr.