Datrys ar gyfer x, y
x=4
y=3
Graff
Rhannu
Copïo i clipfwrdd
2x-3y=-1,5x+2y=26
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x-3y=-1
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x=3y-1
Adio 3y at ddwy ochr yr hafaliad.
x=\frac{1}{2}\left(3y-1\right)
Rhannu’r ddwy ochr â 2.
x=\frac{3}{2}y-\frac{1}{2}
Lluoswch \frac{1}{2} â 3y-1.
5\left(\frac{3}{2}y-\frac{1}{2}\right)+2y=26
Amnewid \frac{3y-1}{2} am x yn yr hafaliad arall, 5x+2y=26.
\frac{15}{2}y-\frac{5}{2}+2y=26
Lluoswch 5 â \frac{3y-1}{2}.
\frac{19}{2}y-\frac{5}{2}=26
Adio \frac{15y}{2} at 2y.
\frac{19}{2}y=\frac{57}{2}
Adio \frac{5}{2} at ddwy ochr yr hafaliad.
y=3
Rhannu dwy ochr hafaliad â \frac{19}{2}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=\frac{3}{2}\times 3-\frac{1}{2}
Cyfnewidiwch 3 am y yn x=\frac{3}{2}y-\frac{1}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{9-1}{2}
Lluoswch \frac{3}{2} â 3.
x=4
Adio -\frac{1}{2} at \frac{9}{2} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=4,y=3
Mae’r system wedi’i datrys nawr.
2x-3y=-1,5x+2y=26
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\26\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}2&-3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&-3\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&2\end{matrix}\right))\left(\begin{matrix}-1\\26\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 5\right)}&-\frac{-3}{2\times 2-\left(-3\times 5\right)}\\-\frac{5}{2\times 2-\left(-3\times 5\right)}&\frac{2}{2\times 2-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-1\\26\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{3}{19}\\-\frac{5}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}-1\\26\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\left(-1\right)+\frac{3}{19}\times 26\\-\frac{5}{19}\left(-1\right)+\frac{2}{19}\times 26\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Gwneud y symiau.
x=4,y=3
Echdynnu yr elfennau matrics x a y.
2x-3y=-1,5x+2y=26
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
5\times 2x+5\left(-3\right)y=5\left(-1\right),2\times 5x+2\times 2y=2\times 26
I wneud 2x a 5x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 5 a holl dermau naill ochr yr ail â 2.
10x-15y=-5,10x+4y=52
Symleiddio.
10x-10x-15y-4y=-5-52
Tynnwch 10x+4y=52 o 10x-15y=-5 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-15y-4y=-5-52
Adio 10x at -10x. Mae'r termau 10x a -10x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-19y=-5-52
Adio -15y at -4y.
-19y=-57
Adio -5 at -52.
y=3
Rhannu’r ddwy ochr â -19.
5x+2\times 3=26
Cyfnewidiwch 3 am y yn 5x+2y=26. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
5x+6=26
Lluoswch 2 â 3.
5x=20
Tynnu 6 o ddwy ochr yr hafaliad.
x=4
Rhannu’r ddwy ochr â 5.
x=4,y=3
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}