Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

2x+y=7,4x-y=5
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x+y=7
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x=-y+7
Tynnu y o ddwy ochr yr hafaliad.
x=\frac{1}{2}\left(-y+7\right)
Rhannu’r ddwy ochr â 2.
x=-\frac{1}{2}y+\frac{7}{2}
Lluoswch \frac{1}{2} â -y+7.
4\left(-\frac{1}{2}y+\frac{7}{2}\right)-y=5
Amnewid \frac{-y+7}{2} am x yn yr hafaliad arall, 4x-y=5.
-2y+14-y=5
Lluoswch 4 â \frac{-y+7}{2}.
-3y+14=5
Adio -2y at -y.
-3y=-9
Tynnu 14 o ddwy ochr yr hafaliad.
y=3
Rhannu’r ddwy ochr â -3.
x=-\frac{1}{2}\times 3+\frac{7}{2}
Cyfnewidiwch 3 am y yn x=-\frac{1}{2}y+\frac{7}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{-3+7}{2}
Lluoswch -\frac{1}{2} â 3.
x=2
Adio \frac{7}{2} at -\frac{3}{2} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=2,y=3
Mae’r system wedi’i datrys nawr.
2x+y=7,4x-y=5
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4}&-\frac{1}{2\left(-1\right)-4}\\-\frac{4}{2\left(-1\right)-4}&\frac{2}{2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 7+\frac{1}{6}\times 5\\\frac{2}{3}\times 7-\frac{1}{3}\times 5\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Gwneud y symiau.
x=2,y=3
Echdynnu yr elfennau matrics x a y.
2x+y=7,4x-y=5
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
4\times 2x+4y=4\times 7,2\times 4x+2\left(-1\right)y=2\times 5
I wneud 2x a 4x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 4 a holl dermau naill ochr yr ail â 2.
8x+4y=28,8x-2y=10
Symleiddio.
8x-8x+4y+2y=28-10
Tynnwch 8x-2y=10 o 8x+4y=28 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
4y+2y=28-10
Adio 8x at -8x. Mae'r termau 8x a -8x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
6y=28-10
Adio 4y at 2y.
6y=18
Adio 28 at -10.
y=3
Rhannu’r ddwy ochr â 6.
4x-3=5
Cyfnewidiwch 3 am y yn 4x-y=5. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
4x=8
Adio 3 at ddwy ochr yr hafaliad.
x=2
Rhannu’r ddwy ochr â 4.
x=2,y=3
Mae’r system wedi’i datrys nawr.