Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

x+y=0
Ystyriwch yr ail hafaliad. Ychwanegu y at y ddwy ochr.
2x+4y=5,x+y=0
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x+4y=5
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x=-4y+5
Tynnu 4y o ddwy ochr yr hafaliad.
x=\frac{1}{2}\left(-4y+5\right)
Rhannu’r ddwy ochr â 2.
x=-2y+\frac{5}{2}
Lluoswch \frac{1}{2} â -4y+5.
-2y+\frac{5}{2}+y=0
Amnewid -2y+\frac{5}{2} am x yn yr hafaliad arall, x+y=0.
-y+\frac{5}{2}=0
Adio -2y at y.
-y=-\frac{5}{2}
Tynnu \frac{5}{2} o ddwy ochr yr hafaliad.
y=\frac{5}{2}
Rhannu’r ddwy ochr â -1.
x=-2\times \frac{5}{2}+\frac{5}{2}
Cyfnewidiwch \frac{5}{2} am y yn x=-2y+\frac{5}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-5+\frac{5}{2}
Lluoswch -2 â \frac{5}{2}.
x=-\frac{5}{2}
Adio \frac{5}{2} at -5.
x=-\frac{5}{2},y=\frac{5}{2}
Mae’r system wedi’i datrys nawr.
x+y=0
Ystyriwch yr ail hafaliad. Ychwanegu y at y ddwy ochr.
2x+4y=5,x+y=0
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}2&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4}&-\frac{4}{2-4}\\-\frac{1}{2-4}&\frac{2}{2-4}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&2\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5\\\frac{1}{2}\times 5\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\\frac{5}{2}\end{matrix}\right)
Gwneud y symiau.
x=-\frac{5}{2},y=\frac{5}{2}
Echdynnu yr elfennau matrics x a y.
x+y=0
Ystyriwch yr ail hafaliad. Ychwanegu y at y ddwy ochr.
2x+4y=5,x+y=0
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
2x+4y=5,2x+2y=0
I wneud 2x a x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 1 a holl dermau naill ochr yr ail â 2.
2x-2x+4y-2y=5
Tynnwch 2x+2y=0 o 2x+4y=5 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
4y-2y=5
Adio 2x at -2x. Mae'r termau 2x a -2x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
2y=5
Adio 4y at -2y.
y=\frac{5}{2}
Rhannu’r ddwy ochr â 2.
x+\frac{5}{2}=0
Cyfnewidiwch \frac{5}{2} am y yn x+y=0. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-\frac{5}{2}
Tynnu \frac{5}{2} o ddwy ochr yr hafaliad.
x=-\frac{5}{2},y=\frac{5}{2}
Mae’r system wedi’i datrys nawr.