Datrys ar gyfer x, y
x=\frac{2}{5}=0.4
y = \frac{17}{5} = 3\frac{2}{5} = 3.4
Graff
Rhannu
Copïo i clipfwrdd
2x+3y=11,3x+2y=8
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x+3y=11
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x=-3y+11
Tynnu 3y o ddwy ochr yr hafaliad.
x=\frac{1}{2}\left(-3y+11\right)
Rhannu’r ddwy ochr â 2.
x=-\frac{3}{2}y+\frac{11}{2}
Lluoswch \frac{1}{2} â -3y+11.
3\left(-\frac{3}{2}y+\frac{11}{2}\right)+2y=8
Amnewid \frac{-3y+11}{2} am x yn yr hafaliad arall, 3x+2y=8.
-\frac{9}{2}y+\frac{33}{2}+2y=8
Lluoswch 3 â \frac{-3y+11}{2}.
-\frac{5}{2}y+\frac{33}{2}=8
Adio -\frac{9y}{2} at 2y.
-\frac{5}{2}y=-\frac{17}{2}
Tynnu \frac{33}{2} o ddwy ochr yr hafaliad.
y=\frac{17}{5}
Rhannu dwy ochr hafaliad â -\frac{5}{2}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=-\frac{3}{2}\times \frac{17}{5}+\frac{11}{2}
Cyfnewidiwch \frac{17}{5} am y yn x=-\frac{3}{2}y+\frac{11}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-\frac{51}{10}+\frac{11}{2}
Lluoswch -\frac{3}{2} â \frac{17}{5} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur. Yna, dylech leihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{2}{5}
Adio \frac{11}{2} at -\frac{51}{10} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{2}{5},y=\frac{17}{5}
Mae’r system wedi’i datrys nawr.
2x+3y=11,3x+2y=8
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\8\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 3}&-\frac{3}{2\times 2-3\times 3}\\-\frac{3}{2\times 2-3\times 3}&\frac{2}{2\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 11+\frac{3}{5}\times 8\\\frac{3}{5}\times 11-\frac{2}{5}\times 8\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\\\frac{17}{5}\end{matrix}\right)
Gwneud y symiau.
x=\frac{2}{5},y=\frac{17}{5}
Echdynnu yr elfennau matrics x a y.
2x+3y=11,3x+2y=8
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
3\times 2x+3\times 3y=3\times 11,2\times 3x+2\times 2y=2\times 8
I wneud 2x a 3x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 3 a holl dermau naill ochr yr ail â 2.
6x+9y=33,6x+4y=16
Symleiddio.
6x-6x+9y-4y=33-16
Tynnwch 6x+4y=16 o 6x+9y=33 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
9y-4y=33-16
Adio 6x at -6x. Mae'r termau 6x a -6x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
5y=33-16
Adio 9y at -4y.
5y=17
Adio 33 at -16.
y=\frac{17}{5}
Rhannu’r ddwy ochr â 5.
3x+2\times \frac{17}{5}=8
Cyfnewidiwch \frac{17}{5} am y yn 3x+2y=8. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
3x+\frac{34}{5}=8
Lluoswch 2 â \frac{17}{5}.
3x=\frac{6}{5}
Tynnu \frac{34}{5} o ddwy ochr yr hafaliad.
x=\frac{2}{5}
Rhannu’r ddwy ochr â 3.
x=\frac{2}{5},y=\frac{17}{5}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}