Datrys ar gyfer x, m (complex solution)
\left\{\begin{matrix}\\x=\frac{16}{17}-\frac{4}{17}i\approx 0.941176471-0.235294118i\text{, }m=-i\text{; }x=4\text{, }m=-1\text{; }x=4\text{, }m=\frac{1}{2}=0.5\text{; }x=\frac{16}{17}+\frac{4}{17}i\approx 0.941176471+0.235294118i\text{, }m=i\text{, }&\text{unconditionally}\\x=-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\text{, }m\in \mathrm{C}\setminus i,-i\text{; }x=-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\text{, }m\in \mathrm{C}\setminus i,-i\text{, }&m\neq i\text{ and }m\neq -i\end{matrix}\right.
Datrys ar gyfer x, m
\left\{\begin{matrix}\\x=2\sqrt{2}\left(\sqrt{2}-1\right)\approx 1.171572875\text{, }m=0\text{; }x=2\sqrt{2}\left(\sqrt{2}+1\right)\approx 6.828427125\text{, }m=0\text{, }&\text{unconditionally}\\x=-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\text{, }m\in \mathrm{R}\text{, }&\left(-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\leq -\frac{4}{m}\text{ and }-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\geq \frac{2}{m}\text{ and }m\geq -1\text{ and }m<0\right)\text{ or }\left(-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}-\frac{2}{m}\leq 0\text{ and }m\leq \frac{1}{2}\text{ and }-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\geq -\frac{4}{m}\text{ and }-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\leq \frac{2}{m}\text{ and }m>0\right)\text{ or }\left(-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}-\frac{2}{m}\geq 0\text{ and }-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}+\frac{4}{m}\leq 0\text{ and }m\geq \frac{-6\sqrt{2}-4}{7}\text{ and }-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\leq -\frac{4}{m}\text{ and }m\leq -1\text{ and }-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\geq \frac{2}{m}\right)\text{ or }\left(-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\geq -\frac{4}{m}\text{ and }m\leq \frac{6\sqrt{2}-4}{7}\text{ and }-\frac{-\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\leq \frac{2}{m}\text{ and }m\geq \frac{1}{2}\right)\\x=-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\text{, }m\in \mathrm{R}\text{, }&\left(-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}-\frac{2}{m}\geq 0\text{ and }m\geq -1\text{ and }-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\leq -\frac{4}{m}\text{ and }m<0\text{ and }-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\geq \frac{2}{m}\right)\text{ or }\left(-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}-\frac{2}{m}\geq 0\text{ and }-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}+\frac{4}{m}\leq 0\text{ and }m\geq \frac{-6\sqrt{2}-4}{7}\text{ and }-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\leq -\frac{4}{m}\text{ and }m<-1\text{ and }-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\geq \frac{2}{m}\right)\text{ or }\left(-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\geq -\frac{4}{m}\text{ and }m\leq \frac{6\sqrt{2}-4}{7}\text{ and }-\frac{\sqrt{8-8m-7m^{2}}+m-4}{m^{2}+1}\leq \frac{2}{m}\text{ and }m>0\right)\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}