Enrhifo
0
Ffactor
0
Rhannu
Copïo i clipfwrdd
\left(-m\right)^{2}+12\left(-m\right)+36-\left(m-6\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(-m+6\right)^{2}.
m^{2}+12\left(-m\right)+36-\left(m-6\right)^{2}
Cyfrifo -m i bŵer 2 a chael m^{2}.
m^{2}+12\left(-m\right)+36-\left(m^{2}-12m+36\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(m-6\right)^{2}.
m^{2}+12\left(-m\right)+36-m^{2}+12m-36
I ddod o hyd i wrthwyneb m^{2}-12m+36, dewch o hyd i wrthwyneb pob term.
12\left(-m\right)+36+12m-36
Cyfuno m^{2} a -m^{2} i gael 0.
12\left(-m\right)+12m
Tynnu 36 o 36 i gael 0.
-12m+12m
Lluosi 12 a -1 i gael -12.
0
Cyfuno -12m a 12m i gael 0.
0
Gellir ffactorio’r gwahaniaeth rhwng sgwariau gan ddefnyddio’r rheol: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
2\left(-m+6\right)
Ystyriwch -2m+12. Ffactora allan 2.
0
Ailysgrifennwch y mynegiad cyfan wedi'i ffactorio. Symleiddio.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}