Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
\frac{1}{4}x+\frac{1}{3}y=0
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
\frac{1}{4}x=-\frac{1}{3}y
Tynnu \frac{y}{3} o ddwy ochr yr hafaliad.
x=4\left(-\frac{1}{3}\right)y
Lluosi’r ddwy ochr â 4.
x=-\frac{4}{3}y
Lluoswch 4 â -\frac{y}{3}.
\frac{1}{2}\left(-\frac{4}{3}\right)y+\frac{1}{6}y=-\frac{3}{2}
Amnewid -\frac{4y}{3} am x yn yr hafaliad arall, \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}.
-\frac{2}{3}y+\frac{1}{6}y=-\frac{3}{2}
Lluoswch \frac{1}{2} â -\frac{4y}{3}.
-\frac{1}{2}y=-\frac{3}{2}
Adio -\frac{2y}{3} at \frac{y}{6}.
y=3
Lluosi’r ddwy ochr â -2.
x=-\frac{4}{3}\times 3
Cyfnewidiwch 3 am y yn x=-\frac{4}{3}y. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-4
Lluoswch -\frac{4}{3} â 3.
x=-4,y=3
Mae’r system wedi’i datrys nawr.
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{6}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&-\frac{\frac{1}{3}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&\frac{\frac{1}{4}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}&\frac{8}{3}\\4&-2\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\left(-\frac{3}{2}\right)\\-2\left(-\frac{3}{2}\right)\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
Gwneud y symiau.
x=-4,y=3
Echdynnu yr elfennau matrics x a y.
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
\frac{1}{2}\times \frac{1}{4}x+\frac{1}{2}\times \frac{1}{3}y=0,\frac{1}{4}\times \frac{1}{2}x+\frac{1}{4}\times \frac{1}{6}y=\frac{1}{4}\left(-\frac{3}{2}\right)
I wneud \frac{x}{4} a \frac{x}{2} yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â \frac{1}{2} a holl dermau naill ochr yr ail â \frac{1}{4}.
\frac{1}{8}x+\frac{1}{6}y=0,\frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8}
Symleiddio.
\frac{1}{8}x-\frac{1}{8}x+\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
Tynnwch \frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8} o \frac{1}{8}x+\frac{1}{6}y=0 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
Adio \frac{x}{8} at -\frac{x}{8}. Mae'r termau \frac{x}{8} a -\frac{x}{8} yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
\frac{1}{8}y=\frac{3}{8}
Adio \frac{y}{6} at -\frac{y}{24}.
y=3
Lluosi’r ddwy ochr â 8.
\frac{1}{2}x+\frac{1}{6}\times 3=-\frac{3}{2}
Cyfnewidiwch 3 am y yn \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
\frac{1}{2}x+\frac{1}{2}=-\frac{3}{2}
Lluoswch \frac{1}{6} â 3.
\frac{1}{2}x=-2
Tynnu \frac{1}{2} o ddwy ochr yr hafaliad.
x=-4
Lluosi’r ddwy ochr â 2.
x=-4,y=3
Mae’r system wedi’i datrys nawr.