\left. \begin{array} { l } { f {(x)} = -6 x + 3 }\\ { g {(x)} = 3 x + 21 x ^ {-3} }\\ { h = f {(-3)} }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { p = o }\\ { \text{Solve for } q \text{ where} } \\ { q = p } \end{array} \right.
Datrys ar gyfer f, x, g, h, j, k, l, m, n, o, p, q
q=i
Rhannu
Copïo i clipfwrdd
h=i
Ystyriwch y pedwaredd hafaliad. Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
i=f\left(-3\right)
Ystyriwch y trydydd hafaliad. Mewnosod y gwerthoedd sy’n hysbys i’r hafaliad.
\frac{i}{-3}=f
Rhannu’r ddwy ochr â -3.
-\frac{1}{3}i=f
Rhannu i â -3 i gael -\frac{1}{3}i.
f=-\frac{1}{3}i
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
-\frac{1}{3}ix=-6x+3
Ystyriwch yr hafaliad cyntaf. Mewnosod y gwerthoedd sy’n hysbys i’r hafaliad.
-\frac{1}{3}ix+6x=3
Ychwanegu 6x at y ddwy ochr.
\left(6-\frac{1}{3}i\right)x=3
Cyfuno -\frac{1}{3}ix a 6x i gael \left(6-\frac{1}{3}i\right)x.
x=\frac{3}{6-\frac{1}{3}i}
Rhannu’r ddwy ochr â 6-\frac{1}{3}i.
x=\frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}
Lluoswch rifiadur ac enwadur \frac{3}{6-\frac{1}{3}i} gyda chyfiau cymhleth yr enwadur 6+\frac{1}{3}i.
x=\frac{18+i}{\frac{325}{9}}
Gwnewch y gwaith lluosi yn \frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}.
x=\frac{162}{325}+\frac{9}{325}i
Rhannu 18+i â \frac{325}{9} i gael \frac{162}{325}+\frac{9}{325}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=3\left(\frac{162}{325}+\frac{9}{325}i\right)+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Ystyriwch yr ail hafaliad. Mewnosod y gwerthoedd sy’n hysbys i’r hafaliad.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Lluosi 3 a \frac{162}{325}+\frac{9}{325}i i gael \frac{486}{325}+\frac{27}{325}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{214}{27}-\frac{971}{729}i\right)
Cyfrifo \frac{162}{325}+\frac{9}{325}i i bŵer -3 a chael \frac{214}{27}-\frac{971}{729}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+\left(\frac{1498}{9}-\frac{6797}{243}i\right)
Lluosi 21 a \frac{214}{27}-\frac{971}{729}i i gael \frac{1498}{9}-\frac{6797}{243}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{491224}{2925}-\frac{2202464}{78975}i
Adio \frac{486}{325}+\frac{27}{325}i a \frac{1498}{9}-\frac{6797}{243}i i gael \frac{491224}{2925}-\frac{2202464}{78975}i.
g=\frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i}
Rhannu’r ddwy ochr â \frac{162}{325}+\frac{9}{325}i.
g=\frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}
Lluoswch rifiadur ac enwadur \frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i} gyda chyfiau cymhleth yr enwadur \frac{162}{325}-\frac{9}{325}i.
g=\frac{\frac{55984}{675}-\frac{18088}{975}i}{\frac{81}{325}}
Gwnewch y gwaith lluosi yn \frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}.
g=\frac{727792}{2187}-\frac{18088}{243}i
Rhannu \frac{55984}{675}-\frac{18088}{975}i â \frac{81}{325} i gael \frac{727792}{2187}-\frac{18088}{243}i.
f=-\frac{1}{3}i x=\frac{162}{325}+\frac{9}{325}i g=\frac{727792}{2187}-\frac{18088}{243}i h=i j=i k=i l=i m=i n=i o=i p=i q=i
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}