Datrys ar gyfer n, o, p, q, r, s, t, u, v, w (complex solution)
r=q
t=q
s=q
n=\frac{2\pi n_{1}i}{\ln(3)}
n_{1}\in \mathrm{Z}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=\frac{2\pi n_{1}i}{\ln(3)}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=\frac{2\pi n_{1}i}{\ln(3)}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }q=\frac{2\pi n_{1}i}{\ln(3)}\text{, }p=2i\pi n_{1}\ln(3)^{-1}\right)\right)\right)\right)\right)\right)\right)\right)\text{, }o=\frac{2\pi n_{1}i}{\ln(3)}\text{, }n_{1}\in \mathrm{Z}\text{, }p\in \cup n_{1},\frac{2\pi n_{1}i}{\ln(3)}\text{, }n_{1}\in \mathrm{Z}\text{, }q\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{2\pi n_{1}i}{\ln(3)}\text{, }p=\frac{2\pi n_{1}i}{\ln(3)}\text{, }n_{1}\in \mathrm{Z}\text{, }u\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{2\pi n_{1}i}{\ln(3)}\text{, }q=\frac{2\pi n_{1}i}{\ln(3)}\text{ and }p=\frac{2\pi n_{1}i}{\ln(3)}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=\frac{2\pi n_{1}i}{\ln(3)}\right)\text{, }n_{1}\in \mathrm{Z}\text{, }v\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{2\pi n_{1}i}{\ln(3)}\text{, }u=\frac{2\pi n_{1}i}{\ln(3)}\text{ and }q=\frac{2\pi n_{1}i}{\ln(3)}\text{ and }p=\frac{2\pi n_{1}i}{\ln(3)}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=\frac{2\pi n_{1}i}{\ln(3)}\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=\frac{2\pi n_{1}i}{\ln(3)}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }q=\frac{2\pi n_{1}i}{\ln(3)}\text{, }p=2i\pi n_{1}\ln(3)^{-1}\right)\right)\right)\right)\text{, }n_{1}\in \mathrm{Z}\text{, }w\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{2\pi n_{1}i}{\ln(3)}\text{, }v=\frac{2\pi n_{1}i}{\ln(3)}\text{ and }u=\frac{2\pi n_{1}i}{\ln(3)}\text{ and }q=\frac{2\pi n_{1}i}{\ln(3)}\text{ and }p=\frac{2\pi n_{1}i}{\ln(3)}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=\frac{2\pi n_{1}i}{\ln(3)}\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=\frac{2\pi n_{1}i}{\ln(3)}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }q=\frac{2\pi n_{1}i}{\ln(3)}\text{, }p=2i\pi n_{1}\ln(3)^{-1}\right)\right)\right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=\frac{2\pi n_{1}i}{\ln(3)}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }q=\frac{2\pi n_{1}i}{\ln(3)}\text{, }p=2i\pi n_{1}\ln(3)^{-1}\right)\right)\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }u=\frac{2\pi n_{1}i}{\ln(3)}\text{, }q=2i\pi n_{1}\ln(3)^{-1}\text{ and }p=2i\pi n_{1}\ln(3)^{-1}\right)\right)\right)\right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }p=2i\pi n_{1}\ln(3)^{-1}\right)\right)\right)\right)\text{, }n_{1}\in \mathrm{Z}
Datrys ar gyfer n, o, p, q, r, s, t, u, v, w
w=0
Rhannu
Copïo i clipfwrdd
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}