Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

2x+y=3,-2x-4y=-1
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x+y=3
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x=-y+3
Tynnu y o ddwy ochr yr hafaliad.
x=\frac{1}{2}\left(-y+3\right)
Rhannu’r ddwy ochr â 2.
x=-\frac{1}{2}y+\frac{3}{2}
Lluoswch \frac{1}{2} â -y+3.
-2\left(-\frac{1}{2}y+\frac{3}{2}\right)-4y=-1
Amnewid \frac{-y+3}{2} am x yn yr hafaliad arall, -2x-4y=-1.
y-3-4y=-1
Lluoswch -2 â \frac{-y+3}{2}.
-3y-3=-1
Adio y at -4y.
-3y=2
Adio 3 at ddwy ochr yr hafaliad.
y=-\frac{2}{3}
Rhannu’r ddwy ochr â -3.
x=-\frac{1}{2}\left(-\frac{2}{3}\right)+\frac{3}{2}
Cyfnewidiwch -\frac{2}{3} am y yn x=-\frac{1}{2}y+\frac{3}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{1}{3}+\frac{3}{2}
Lluoswch -\frac{1}{2} â -\frac{2}{3} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur. Yna, dylech leihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{11}{6}
Adio \frac{3}{2} at \frac{1}{3} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{11}{6},y=-\frac{2}{3}
Mae’r system wedi’i datrys nawr.
2x+y=3,-2x-4y=-1
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&1\\-2&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-2\right)}&-\frac{1}{2\left(-4\right)-\left(-2\right)}\\-\frac{-2}{2\left(-4\right)-\left(-2\right)}&\frac{2}{2\left(-4\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{6}\\-\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3+\frac{1}{6}\left(-1\right)\\-\frac{1}{3}\times 3-\frac{1}{3}\left(-1\right)\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{6}\\-\frac{2}{3}\end{matrix}\right)
Gwneud y symiau.
x=\frac{11}{6},y=-\frac{2}{3}
Echdynnu yr elfennau matrics x a y.
2x+y=3,-2x-4y=-1
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
-2\times 2x-2y=-2\times 3,2\left(-2\right)x+2\left(-4\right)y=2\left(-1\right)
I wneud 2x a -2x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â -2 a holl dermau naill ochr yr ail â 2.
-4x-2y=-6,-4x-8y=-2
Symleiddio.
-4x+4x-2y+8y=-6+2
Tynnwch -4x-8y=-2 o -4x-2y=-6 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-2y+8y=-6+2
Adio -4x at 4x. Mae'r termau -4x a 4x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
6y=-6+2
Adio -2y at 8y.
6y=-4
Adio -6 at 2.
y=-\frac{2}{3}
Rhannu’r ddwy ochr â 6.
-2x-4\left(-\frac{2}{3}\right)=-1
Cyfnewidiwch -\frac{2}{3} am y yn -2x-4y=-1. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
-2x+\frac{8}{3}=-1
Lluoswch -4 â -\frac{2}{3}.
-2x=-\frac{11}{3}
Tynnu \frac{8}{3} o ddwy ochr yr hafaliad.
x=\frac{11}{6}
Rhannu’r ddwy ochr â -2.
x=\frac{11}{6},y=-\frac{2}{3}
Mae’r system wedi’i datrys nawr.