Datrys ar gyfer x, y
x=\sqrt{2}+1\approx 2.414213562
y=\frac{\sqrt{2}}{2}\approx 0.707106781
Graff
Rhannu
Copïo i clipfwrdd
\frac{1-\frac{2}{\sqrt{2}+1+1}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Ystyriwch yr hafaliad cyntaf. Mewnosod y gwerthoedd sy’n hysbys i’r hafaliad.
\frac{1-\frac{2}{\sqrt{2}+2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Adio 1 a 1 i gael 2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Mae'n rhesymoli enwadur \frac{2}{\sqrt{2}+2} drwy luosi'r rhifiadur a'r enwadur â \sqrt{2}-2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Ystyriwch \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{2-4}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Sgwâr \sqrt{2}. Sgwâr 2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{-2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Tynnu 4 o 2 i gael -2.
\frac{1-\left(-\left(\sqrt{2}-2\right)\right)}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Canslo -2 a -2.
\frac{1+\sqrt{2}-2}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Gwrthwyneb -\left(\sqrt{2}-2\right) yw \sqrt{2}-2.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Tynnu 2 o 1 i gael -1.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(\sqrt{2}+1\right)^{2}.
\frac{-1+\sqrt{2}}{\frac{2+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Sgwâr \sqrt{2} yw 2.
\frac{-1+\sqrt{2}}{\frac{3+2\sqrt{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Adio 2 a 1 i gael 3.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+1+1}}=y
Adio 3 a 1 i gael 4.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2}}=y
Adio 1 a 1 i gael 2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}=y
Mae'n rhesymoli enwadur \frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2} drwy luosi'r rhifiadur a'r enwadur â \sqrt{2}-2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}=y
Ystyriwch \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{2-4}}=y
Sgwâr \sqrt{2}. Sgwâr 2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}}=y
Tynnu 4 o 2 i gael -2.
\frac{\left(-1+\sqrt{2}\right)\left(-2\right)}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
Rhannwch -1+\sqrt{2} â \frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2} drwy luosi -1+\sqrt{2} â chilydd \frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
Defnyddio’r briodwedd ddosbarthu i luosi -1+\sqrt{2} â -2.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\sqrt{2}-2\right)\left(\sqrt{2}-2\right)}=y
Defnyddio’r briodwedd ddosbarthu i luosi -2 â \sqrt{2}+1.
\frac{2-2\sqrt{2}}{\left(4-2\right)\left(\sqrt{2}-2\right)}=y
Cyfuno 2\sqrt{2} a -2\sqrt{2} i gael 0.
\frac{2-2\sqrt{2}}{2\left(\sqrt{2}-2\right)}=y
Tynnu 2 o 4 i gael 2.
\frac{2-2\sqrt{2}}{2\sqrt{2}-4}=y
Defnyddio’r briodwedd ddosbarthu i luosi 2 â \sqrt{2}-2.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right)}=y
Mae'n rhesymoli enwadur \frac{2-2\sqrt{2}}{2\sqrt{2}-4} drwy luosi'r rhifiadur a'r enwadur â 2\sqrt{2}+4.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}\right)^{2}-4^{2}}=y
Ystyriwch \left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{2^{2}\left(\sqrt{2}\right)^{2}-4^{2}}=y
Ehangu \left(2\sqrt{2}\right)^{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\left(\sqrt{2}\right)^{2}-4^{2}}=y
Cyfrifo 2 i bŵer 2 a chael 4.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\times 2-4^{2}}=y
Sgwâr \sqrt{2} yw 2.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-4^{2}}=y
Lluosi 4 a 2 i gael 8.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-16}=y
Cyfrifo 4 i bŵer 2 a chael 16.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}=y
Tynnu 16 o 8 i gael -8.
y=\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
y=\frac{-4\sqrt{2}+8-4\left(\sqrt{2}\right)^{2}}{-8}
Defnyddio’r briodwedd ddosbarthu i luosi 2-2\sqrt{2} â 2\sqrt{2}+4 a chyfuno termau tebyg.
y=\frac{-4\sqrt{2}+8-4\times 2}{-8}
Sgwâr \sqrt{2} yw 2.
y=\frac{-4\sqrt{2}+8-8}{-8}
Lluosi -4 a 2 i gael -8.
y=\frac{-4\sqrt{2}}{-8}
Tynnu 8 o 8 i gael 0.
y=\frac{1}{2}\sqrt{2}
Rhannu -4\sqrt{2} â -8 i gael \frac{1}{2}\sqrt{2}.
x=\sqrt{2}+1 y=\frac{1}{2}\sqrt{2}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}