\left( \begin{array} { c } { 1 } \\ { - 1 } \\ { 1 } \\ { - 1 } \end{array} \right) \left( \begin{array} { l l l } { 1 } & { 1 } & { 1 } \end{array} \right)
Enrhifo
\left(\begin{matrix}1&1&1\\-1&-1&-1\\1&1&1\\-1&-1&-1\end{matrix}\right)
Trawsddodi Matrics
\left(\begin{matrix}1&-1&1&-1\\1&-1&1&-1\\1&-1&1&-1\end{matrix}\right)
Rhannu
Copïo i clipfwrdd
\left(\begin{matrix}1\\-1\\1\\-1\end{matrix}\right)\left(\begin{matrix}1&1&1\end{matrix}\right)
Mae lluosi matrics yn cael ei ddiffinio os yw nifer y colofnau yn y matrics cyntaf yn hafal i nifer y rhesi yn yr ail fatrics.
\left(\begin{matrix}1&&\\&&\\&&\\&&\end{matrix}\right)
Lluoswch elfen gyntaf y matrics cyntaf ag elfen gyntaf yr ail fatrics i gael yr elfen yn y rhes gyntaf, colofn gyntaf y matrics cynnyrch.
\left(\begin{matrix}1&1&1\\-1&-1&-1\\1&1&1\\-1&-1&-1\end{matrix}\right)
Mae modd dod o hyd i’r elfennau sy'n weddill o'r matrics cynnyrch yn yr un modd.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}