Neidio i'r prif gynnwys
Datrys ar gyfer x, y
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

2x+5y=9,x-y=5
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x+5y=9
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x=-5y+9
Tynnu 5y o ddwy ochr yr hafaliad.
x=\frac{1}{2}\left(-5y+9\right)
Rhannu’r ddwy ochr â 2.
x=-\frac{5}{2}y+\frac{9}{2}
Lluoswch \frac{1}{2} â -5y+9.
-\frac{5}{2}y+\frac{9}{2}-y=5
Amnewid \frac{-5y+9}{2} am x yn yr hafaliad arall, x-y=5.
-\frac{7}{2}y+\frac{9}{2}=5
Adio -\frac{5y}{2} at -y.
-\frac{7}{2}y=\frac{1}{2}
Tynnu \frac{9}{2} o ddwy ochr yr hafaliad.
y=-\frac{1}{7}
Rhannu dwy ochr hafaliad â -\frac{7}{2}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=-\frac{5}{2}\left(-\frac{1}{7}\right)+\frac{9}{2}
Cyfnewidiwch -\frac{1}{7} am y yn x=-\frac{5}{2}y+\frac{9}{2}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{5}{14}+\frac{9}{2}
Lluoswch -\frac{5}{2} â -\frac{1}{7} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur. Yna, dylech leihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{34}{7}
Adio \frac{9}{2} at \frac{5}{14} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=\frac{34}{7},y=-\frac{1}{7}
Mae’r system wedi’i datrys nawr.
2x+5y=9,x-y=5
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}2&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&5\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-5}&-\frac{5}{2\left(-1\right)-5}\\-\frac{1}{2\left(-1\right)-5}&\frac{2}{2\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{5}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 9+\frac{5}{7}\times 5\\\frac{1}{7}\times 9-\frac{2}{7}\times 5\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{34}{7}\\-\frac{1}{7}\end{matrix}\right)
Gwneud y symiau.
x=\frac{34}{7},y=-\frac{1}{7}
Echdynnu yr elfennau matrics x a y.
2x+5y=9,x-y=5
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
2x+5y=9,2x+2\left(-1\right)y=2\times 5
I wneud 2x a x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 1 a holl dermau naill ochr yr ail â 2.
2x+5y=9,2x-2y=10
Symleiddio.
2x-2x+5y+2y=9-10
Tynnwch 2x-2y=10 o 2x+5y=9 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
5y+2y=9-10
Adio 2x at -2x. Mae'r termau 2x a -2x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
7y=9-10
Adio 5y at 2y.
7y=-1
Adio 9 at -10.
y=-\frac{1}{7}
Rhannu’r ddwy ochr â 7.
x-\left(-\frac{1}{7}\right)=5
Cyfnewidiwch -\frac{1}{7} am y yn x-y=5. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{34}{7}
Tynnu \frac{1}{7} o ddwy ochr yr hafaliad.
x=\frac{34}{7},y=-\frac{1}{7}
Mae’r system wedi’i datrys nawr.