\left\{ \begin{array} { l } { x + y = 16 } \\ { x ^ { 2 } + y ^ { 2 } = 64 } \end{array} \right.
Datrys ar gyfer x, y (complex solution)
x=8+4\sqrt{2}i\approx 8+5.656854249i\text{, }y=-4\sqrt{2}i+8\approx 8-5.656854249i
x=-4\sqrt{2}i+8\approx 8-5.656854249i\text{, }y=8+4\sqrt{2}i\approx 8+5.656854249i
Graff
Rhannu
Copïo i clipfwrdd
x+y=16
Datryswch x+y=16 am x drwy ynysu x ar ochr chwith yr arwydd hafal.
x=-y+16
Tynnu y o ddwy ochr yr hafaliad.
y^{2}+\left(-y+16\right)^{2}=64
Amnewid -y+16 am x yn yr hafaliad arall, y^{2}+x^{2}=64.
y^{2}+y^{2}-32y+256=64
Sgwâr -y+16.
2y^{2}-32y+256=64
Adio y^{2} at y^{2}.
2y^{2}-32y+192=0
Tynnu 64 o ddwy ochr yr hafaliad.
y=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 2\times 192}}{2\times 2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1+1\left(-1\right)^{2} am a, 1\times 16\left(-1\right)\times 2 am b, a 192 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-32\right)±\sqrt{1024-4\times 2\times 192}}{2\times 2}
Sgwâr 1\times 16\left(-1\right)\times 2.
y=\frac{-\left(-32\right)±\sqrt{1024-8\times 192}}{2\times 2}
Lluoswch -4 â 1+1\left(-1\right)^{2}.
y=\frac{-\left(-32\right)±\sqrt{1024-1536}}{2\times 2}
Lluoswch -8 â 192.
y=\frac{-\left(-32\right)±\sqrt{-512}}{2\times 2}
Adio 1024 at -1536.
y=\frac{-\left(-32\right)±16\sqrt{2}i}{2\times 2}
Cymryd isradd -512.
y=\frac{32±16\sqrt{2}i}{2\times 2}
Gwrthwyneb 1\times 16\left(-1\right)\times 2 yw 32.
y=\frac{32±16\sqrt{2}i}{4}
Lluoswch 2 â 1+1\left(-1\right)^{2}.
y=\frac{32+2^{\frac{9}{2}}i}{4}
Datryswch yr hafaliad y=\frac{32±16\sqrt{2}i}{4} pan fydd ± yn plws. Adio 32 at 16i\sqrt{2}.
y=8+2^{\frac{5}{2}}i
Rhannwch 32+i\times 2^{\frac{9}{2}} â 4.
y=\frac{-2^{\frac{9}{2}}i+32}{4}
Datryswch yr hafaliad y=\frac{32±16\sqrt{2}i}{4} pan fydd ± yn minws. Tynnu 16i\sqrt{2} o 32.
y=-2^{\frac{5}{2}}i+8
Rhannwch 32-i\times 2^{\frac{9}{2}} â 4.
x=-\left(8+2^{\frac{5}{2}}i\right)+16
Mae dau ateb ar gyfer y: 8+i\times 2^{\frac{5}{2}} a 8-i\times 2^{\frac{5}{2}}. Amnewidiwch 8+i\times 2^{\frac{5}{2}} am y yn yr hafaliad x=-y+16 i ddod o hyd i'r ateb cyfatebol ar gyfer x sy'n bodloni'r ddau hafaliad.
x=-\left(-2^{\frac{5}{2}}i+8\right)+16
Nawr, amnewidiwch 8-i\times 2^{\frac{5}{2}} am y yn yr hafaliad x=-y+16 a’i ddatrys i ganfod yr ateb cyfatebol ar gyfer x sy'n bodloni'r ddau hafaliad.
x=-\left(8+2^{\frac{5}{2}}i\right)+16,y=8+2^{\frac{5}{2}}i\text{ or }x=-\left(-2^{\frac{5}{2}}i+8\right)+16,y=-2^{\frac{5}{2}}i+8
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}