\left\{ \begin{array} { l } { 3 x - 8 y = - 13 } \\ { 5 y + 2 x = - 19 } \end{array} \right.
Datrys ar gyfer x, y
x=-7
y=-1
Graff
Rhannu
Copïo i clipfwrdd
3x-8y=-13,2x+5y=-19
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
3x-8y=-13
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
3x=8y-13
Adio 8y at ddwy ochr yr hafaliad.
x=\frac{1}{3}\left(8y-13\right)
Rhannu’r ddwy ochr â 3.
x=\frac{8}{3}y-\frac{13}{3}
Lluoswch \frac{1}{3} â 8y-13.
2\left(\frac{8}{3}y-\frac{13}{3}\right)+5y=-19
Amnewid \frac{8y-13}{3} am x yn yr hafaliad arall, 2x+5y=-19.
\frac{16}{3}y-\frac{26}{3}+5y=-19
Lluoswch 2 â \frac{8y-13}{3}.
\frac{31}{3}y-\frac{26}{3}=-19
Adio \frac{16y}{3} at 5y.
\frac{31}{3}y=-\frac{31}{3}
Adio \frac{26}{3} at ddwy ochr yr hafaliad.
y=-1
Rhannu dwy ochr hafaliad â \frac{31}{3}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=\frac{8}{3}\left(-1\right)-\frac{13}{3}
Cyfnewidiwch -1 am y yn x=\frac{8}{3}y-\frac{13}{3}. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=\frac{-8-13}{3}
Lluoswch \frac{8}{3} â -1.
x=-7
Adio -\frac{13}{3} at -\frac{8}{3} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
x=-7,y=-1
Mae’r system wedi’i datrys nawr.
3x-8y=-13,2x+5y=-19
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}3&-8\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\-19\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}3&-8\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}3&-8\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-8\\2&5\end{matrix}\right))\left(\begin{matrix}-13\\-19\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-8\times 2\right)}&-\frac{-8}{3\times 5-\left(-8\times 2\right)}\\-\frac{2}{3\times 5-\left(-8\times 2\right)}&\frac{3}{3\times 5-\left(-8\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-13\\-19\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}&\frac{8}{31}\\-\frac{2}{31}&\frac{3}{31}\end{matrix}\right)\left(\begin{matrix}-13\\-19\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}\left(-13\right)+\frac{8}{31}\left(-19\right)\\-\frac{2}{31}\left(-13\right)+\frac{3}{31}\left(-19\right)\end{matrix}\right)
Lluosi’r matricsau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-1\end{matrix}\right)
Gwneud y symiau.
x=-7,y=-1
Echdynnu yr elfennau matrics x a y.
3x-8y=-13,2x+5y=-19
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
2\times 3x+2\left(-8\right)y=2\left(-13\right),3\times 2x+3\times 5y=3\left(-19\right)
I wneud 3x a 2x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 2 a holl dermau naill ochr yr ail â 3.
6x-16y=-26,6x+15y=-57
Symleiddio.
6x-6x-16y-15y=-26+57
Tynnwch 6x+15y=-57 o 6x-16y=-26 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-16y-15y=-26+57
Adio 6x at -6x. Mae'r termau 6x a -6x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
-31y=-26+57
Adio -16y at -15y.
-31y=31
Adio -26 at 57.
y=-1
Rhannu’r ddwy ochr â -31.
2x+5\left(-1\right)=-19
Cyfnewidiwch -1 am y yn 2x+5y=-19. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
2x-5=-19
Lluoswch 5 â -1.
2x=-14
Adio 5 at ddwy ochr yr hafaliad.
x=-7
Rhannu’r ddwy ochr â 2.
x=-7,y=-1
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}