\left\{ \begin{array} { l } { 2 x - 3 y = 0 } \\ { x - 2 y - 1 = 0 } \end{array} \right.
Datrys ar gyfer x, y
x=-3
y=-2
Graff
Rhannu
Copïo i clipfwrdd
2x-3y=0,x-2y-1=0
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
2x-3y=0
Dewiswch un o'r hafaliadau a’i ddatrys ar gyfer x drwy ynysu x ar ochr chwith yr arwydd hafal.
2x=3y
Adio 3y at ddwy ochr yr hafaliad.
x=\frac{1}{2}\times 3y
Rhannu’r ddwy ochr â 2.
x=\frac{3}{2}y
Lluoswch \frac{1}{2} â 3y.
\frac{3}{2}y-2y-1=0
Amnewid \frac{3y}{2} am x yn yr hafaliad arall, x-2y-1=0.
-\frac{1}{2}y-1=0
Adio \frac{3y}{2} at -2y.
-\frac{1}{2}y=1
Adio 1 at ddwy ochr yr hafaliad.
y=-2
Lluosi’r ddwy ochr â -2.
x=\frac{3}{2}\left(-2\right)
Cyfnewidiwch -2 am y yn x=\frac{3}{2}y. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x=-3
Lluoswch \frac{3}{2} â -2.
x=-3,y=-2
Mae’r system wedi’i datrys nawr.
2x-3y=0,x-2y-1=0
Rhowch yr hafaliadau yn y ffurf safonol ac yna defnyddio’r matricsau i ddatrys y system o hafaliadau.
\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
Ysgrifennu’r hafaliadau ar ffurf matrics.
inverse(\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Lluoswch chwith yr hafaliad gan y matrics gwrthdro o \left(\begin{matrix}2&-3\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Cynnyrch matrics a'i wrthdro ydy'r matrics hunaniaeth.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Lluoswch y matricsau ar ochr chwith yr arwydd hafal.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\right)}\\-\frac{1}{2\left(-2\right)-\left(-3\right)}&\frac{2}{2\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Ar gyfer y matrics 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), y matrics gwrthdro yw \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), felly gellir ailysgrifennu hafaliad y matrics fel problem lluosi matrics.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Gwneud y symiau.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
Lluosi’r matricsau.
x=-3,y=-2
Echdynnu yr elfennau matrics x a y.
2x-3y=0,x-2y-1=0
Er mwyn datrys drwy ddileu, mae’n rhaid i gyfernodau un o'r newidynnau fod yr un peth yn y ddau hafaliad fel bod y newidyn yn cael ei ddiddymu pan fydd un hafaliad yn cael ei dynnu o’r llall.
2x-3y=0,2x+2\left(-2\right)y+2\left(-1\right)=0
I wneud 2x a x yn gyfartal, lluoswch yr holl dermau ar bob ochr yr hafaliad cyntaf â 1 a holl dermau naill ochr yr ail â 2.
2x-3y=0,2x-4y-2=0
Symleiddio.
2x-2x-3y+4y+2=0
Tynnwch 2x-4y-2=0 o 2x-3y=0 trwy dynnu termau sydd yr un fath ar bob ochr yr arwydd hafal.
-3y+4y+2=0
Adio 2x at -2x. Mae'r termau 2x a -2x yn diddymu ei gilydd, gan adael hafaliad gyda dim ond un newidyn y gellir ei datrys.
y+2=0
Adio -3y at 4y.
y=-2
Tynnu 2 o ddwy ochr yr hafaliad.
x-2\left(-2\right)-1=0
Cyfnewidiwch -2 am y yn x-2y-1=0. Am fod yr hafaliad canlynol yn cynnwys dim ond un newidyn, gallwch ddatrys ar gyfer x yn uniongyrchol.
x+4-1=0
Lluoswch -2 â -2.
x+3=0
Adio 4 at -1.
x=-3
Tynnu 3 o ddwy ochr yr hafaliad.
x=-3,y=-2
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}