\left\{ \begin{array} { l } { 2 p + ( - 3 ) q - 3 t = ( 3 ) } \\ { ( - 5 ) p - q + ( 3 ) t = - 3 } \\ { ( 4 ) p - ( 0 ) q - 5 t = ( - 8 ) } \end{array} \right.
Datrys ar gyfer p, q, t
t = \frac{184}{37} = 4\frac{36}{37} \approx 4.972972973
p = \frac{156}{37} = 4\frac{8}{37} \approx 4.216216216
q = -\frac{117}{37} = -3\frac{6}{37} \approx -3.162162162
Rhannu
Copïo i clipfwrdd
-5p-q+3t=-3 2p-3q-3t=3 4p-0q-5t=-8
Newid trefn yr hafaliadau.
q=-5p+3t+3
Datrys -5p-q+3t=-3 ar gyfer q.
2p-3\left(-5p+3t+3\right)-3t=3 4p-0\left(-5p+3t+3\right)-5t=-8
Amnewid -5p+3t+3 am q yn yr ail a'r trydydd hafaliad.
p=\frac{12}{17}+\frac{12}{17}t t=\frac{8}{5}+\frac{4}{5}p
Datrys yr hafaliadau hyn ar gyfer p a t yn eu tro.
t=\frac{8}{5}+\frac{4}{5}\left(\frac{12}{17}+\frac{12}{17}t\right)
Amnewid \frac{12}{17}+\frac{12}{17}t am p yn yr hafaliad t=\frac{8}{5}+\frac{4}{5}p.
t=\frac{184}{37}
Datrys t=\frac{8}{5}+\frac{4}{5}\left(\frac{12}{17}+\frac{12}{17}t\right) ar gyfer t.
p=\frac{12}{17}+\frac{12}{17}\times \frac{184}{37}
Amnewid \frac{184}{37} am t yn yr hafaliad p=\frac{12}{17}+\frac{12}{17}t.
p=\frac{156}{37}
Cyfrifo p o p=\frac{12}{17}+\frac{12}{17}\times \frac{184}{37}.
q=-5\times \frac{156}{37}+3\times \frac{184}{37}+3
Amnewid \frac{156}{37} am p a \frac{184}{37} am t yn yr hafaliad q=-5p+3t+3.
q=-\frac{117}{37}
Cyfrifo q o q=-5\times \frac{156}{37}+3\times \frac{184}{37}+3.
p=\frac{156}{37} q=-\frac{117}{37} t=\frac{184}{37}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}