\left\{ \begin{array} { l } { \frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 2 } = 1 } \\ { x = m y + 1 } \end{array} \right.
Datrys ar gyfer x, y
x=\frac{\sqrt{2}\left(-m\sqrt{2m^{2}+3}+\sqrt{2}\right)}{m^{2}+2}\text{, }y=-\frac{\sqrt{2\left(2m^{2}+3\right)}+m}{m^{2}+2}
x=\frac{\sqrt{2}\left(m\sqrt{2m^{2}+3}+\sqrt{2}\right)}{m^{2}+2}\text{, }y=\frac{\sqrt{2\left(2m^{2}+3\right)}-m}{m^{2}+2}
Datrys ar gyfer x, y (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{2}\left(-m\sqrt{2m^{2}+3}+\sqrt{2}\right)}{m^{2}+2}\text{, }y=-\frac{\sqrt{2\left(2m^{2}+3\right)}+m}{m^{2}+2}\text{; }x=\frac{\sqrt{2}\left(m\sqrt{2m^{2}+3}+\sqrt{2}\right)}{m^{2}+2}\text{, }y=\frac{\sqrt{2\left(2m^{2}+3\right)}-m}{m^{2}+2}\text{, }&m\neq -\sqrt{2}i\text{ and }m\neq \sqrt{2}i\\x=\frac{5}{2}=2.5\text{, }y=\frac{3}{2m}\text{, }&m=-\sqrt{2}i\text{ or }m=\sqrt{2}i\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
x^{2}+2y^{2}=4
Ystyriwch yr hafaliad cyntaf. Lluoswch ddwy ochr yr hafaliad wrth 4, lluoswm cyffredin lleiaf 4,2.
x-my=1
Ystyriwch yr ail hafaliad. Tynnu my o'r ddwy ochr.
x+\left(-m\right)y=1,2y^{2}+x^{2}=4
I ddatrys pâr o hafaliadau gan ddefnyddio amnewid, yn gyntaf datryswch un o'r hafaliadau ar gyfer un o'r newidynnau. Yna amnewidiwch y canlyniad am y newidyn hwnnw yn yr hafaliad arall.
x+\left(-m\right)y=1
Datryswch x+\left(-m\right)y=1 am x drwy ynysu x ar ochr chwith yr arwydd hafal.
x=my+1
Tynnu \left(-m\right)y o ddwy ochr yr hafaliad.
2y^{2}+\left(my+1\right)^{2}=4
Amnewid my+1 am x yn yr hafaliad arall, 2y^{2}+x^{2}=4.
2y^{2}+m^{2}y^{2}+2my+1=4
Sgwâr my+1.
\left(m^{2}+2\right)y^{2}+2my+1=4
Adio 2y^{2} at m^{2}y^{2}.
\left(m^{2}+2\right)y^{2}+2my-3=0
Tynnu 4 o ddwy ochr yr hafaliad.
y=\frac{-2m±\sqrt{\left(2m\right)^{2}-4\left(m^{2}+2\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 2+1m^{2} am a, 1\times 1\times 2m am b, a -3 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2m±\sqrt{4m^{2}-4\left(m^{2}+2\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Sgwâr 1\times 1\times 2m.
y=\frac{-2m±\sqrt{4m^{2}+\left(-4m^{2}-8\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Lluoswch -4 â 2+1m^{2}.
y=\frac{-2m±\sqrt{4m^{2}+12m^{2}+24}}{2\left(m^{2}+2\right)}
Lluoswch -8-4m^{2} â -3.
y=\frac{-2m±\sqrt{16m^{2}+24}}{2\left(m^{2}+2\right)}
Adio 4m^{2} at 24+12m^{2}.
y=\frac{-2m±2\sqrt{4m^{2}+6}}{2\left(m^{2}+2\right)}
Cymryd isradd 24+16m^{2}.
y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4}
Lluoswch 2 â 2+1m^{2}.
y=\frac{2\sqrt{4m^{2}+6}-2m}{2m^{2}+4}
Datryswch yr hafaliad y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4} pan fydd ± yn plws. Adio -2m at 2\sqrt{6+4m^{2}}.
y=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}
Rhannwch -2m+2\sqrt{6+4m^{2}} â 4+2m^{2}.
y=\frac{-2\sqrt{4m^{2}+6}-2m}{2m^{2}+4}
Datryswch yr hafaliad y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4} pan fydd ± yn minws. Tynnu 2\sqrt{6+4m^{2}} o -2m.
y=-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}
Rhannwch -2m-2\sqrt{6+4m^{2}} â 4+2m^{2}.
x=m\times \frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}+1
Mae dau ateb ar gyfer y: \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} a -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}. Amnewidiwch \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} am y yn yr hafaliad x=my+1 i ddod o hyd i'r ateb cyfatebol ar gyfer x sy'n bodloni'r ddau hafaliad.
x=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m+1
Lluoswch m â \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}}.
x=1+\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m
Adio m\times \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} at 1.
x=m\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)+1
Nawr, amnewidiwch -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}} am y yn yr hafaliad x=my+1 a’i ddatrys i ganfod yr ateb cyfatebol ar gyfer x sy'n bodloni'r ddau hafaliad.
x=\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m+1
Lluoswch m â -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}.
x=1+\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m
Adio m\left(-\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}\right) at 1.
x=1+\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m,y=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}\text{ or }x=1+\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m,y=-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}
Mae’r system wedi’i datrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}