Neidio i'r prif gynnwys
Enrhifo
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\int 30.7+\frac{81t^{2}}{100}+\frac{243t^{4}}{2000}+\frac{243t^{6}}{20000}\mathrm{d}t
Gwerthuso’r integryn amhenodol yn gyntaf.
\int 30.7\mathrm{d}t+\int \frac{81t^{2}}{100}\mathrm{d}t+\int \frac{243t^{4}}{2000}\mathrm{d}t+\int \frac{243t^{6}}{20000}\mathrm{d}t
Integreiddio'r swm fesul term.
\int 30.7\mathrm{d}t+\frac{81\int t^{2}\mathrm{d}t}{100}+\frac{243\int t^{4}\mathrm{d}t}{2000}+\frac{243\int t^{6}\mathrm{d}t}{20000}
Ffactoreiddio allan y cysonyn ym mhob un o'r termau.
\frac{307t}{10}+\frac{81\int t^{2}\mathrm{d}t}{100}+\frac{243\int t^{4}\mathrm{d}t}{2000}+\frac{243\int t^{6}\mathrm{d}t}{20000}
Canfod integryn 30.7 gan ddefnyddio'r rheol tabl o integrynnau cyffredin \int a\mathrm{d}t=at.
\frac{307t}{10}+\frac{27t^{3}}{100}+\frac{243\int t^{4}\mathrm{d}t}{2000}+\frac{243\int t^{6}\mathrm{d}t}{20000}
Ers \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int t^{2}\mathrm{d}t gyda \frac{t^{3}}{3}. Lluoswch 0.81 â \frac{t^{3}}{3}.
\frac{307t}{10}+\frac{27t^{3}}{100}+\frac{243t^{5}}{10000}+\frac{243\int t^{6}\mathrm{d}t}{20000}
Ers \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int t^{4}\mathrm{d}t gyda \frac{t^{5}}{5}. Lluoswch 0.1215 â \frac{t^{5}}{5}.
\frac{307t}{10}+\frac{27t^{3}}{100}+\frac{243t^{5}}{10000}+\frac{243t^{7}}{140000}
Ers \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int t^{6}\mathrm{d}t gyda \frac{t^{7}}{7}. Lluoswch 0.01215 â \frac{t^{7}}{7}.
30.7\times 3+\frac{27}{100}\times 3^{3}+\frac{243}{10000}\times 3^{5}+\frac{243}{140000}\times 3^{7}-\left(30.7\times 0+\frac{27}{100}\times 0^{3}+\frac{243}{10000}\times 0^{5}+\frac{243}{140000}\times 0^{7}\right)
Yr integryn pendant yw integryn amhendant y mynegiant wedi’i werthuso ar lefel uchaf yr integreiddiad llai’r integryn amhendant ar lefel isaf yr integreiddiad.
\frac{15272727}{140000}
Symleiddio.