Enrhifo
\frac{2x^{\frac{3}{2}}}{15}+\frac{16x^{\frac{3}{4}}}{3}+С
Gwahaniaethu w.r.t. x
\frac{\sqrt{x}}{5}+\frac{4}{\sqrt[4]{x}}
Rhannu
Copïo i clipfwrdd
\int \frac{\sqrt{x}}{5}\mathrm{d}x+\int \frac{4}{\sqrt[4]{x}}\mathrm{d}x
Integreiddio'r swm fesul term.
\frac{\int \sqrt{x}\mathrm{d}x}{5}+4\int \frac{1}{\sqrt[4]{x}}\mathrm{d}x
Ffactoreiddio allan y cysonyn ym mhob un o'r termau.
\frac{2x^{\frac{3}{2}}}{15}+4\int \frac{1}{\sqrt[4]{x}}\mathrm{d}x
Ailysgrifennwch \sqrt{x} fel x^{\frac{1}{2}}. Ers \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int x^{\frac{1}{2}}\mathrm{d}x gyda \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Symleiddio. Lluoswch \frac{1}{5} â \frac{2x^{\frac{3}{2}}}{3}.
\frac{2x^{\frac{3}{2}}}{15}+\frac{16x^{\frac{3}{4}}}{3}
Ailysgrifennwch \frac{1}{\sqrt[4]{x}} fel x^{-\frac{1}{4}}. Ers \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int x^{-\frac{1}{4}}\mathrm{d}x gyda \frac{x^{\frac{3}{4}}}{\frac{3}{4}}. Symleiddio. Lluoswch 4 â \frac{4x^{\frac{3}{4}}}{3}.
\frac{2x^{\frac{3}{2}}}{15}+\frac{16x^{\frac{3}{4}}}{3}+С
Os yw F\left(x\right) yn integryn amhendant o f\left(x\right), yna bydd F\left(x\right)+C yn rhoi’r set o holl integrynnau amhendant f\left(x\right). Felly, ychwanegwch gysonyn yr integryn C\in \mathrm{R} at y canlyniad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}