Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Gwahaniaethu w.r.t. x
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\int \frac{\left(2x^{2}-x+3\right)x^{3}}{x^{2}}\mathrm{d}x
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{3x^{3}-x^{4}+2x^{5}}{x^{2}}.
\int x\left(2x^{2}-x+3\right)\mathrm{d}x
Canslo x^{2} yn y rhifiadur a'r enwadur.
\int 2x^{3}-x^{2}+3x\mathrm{d}x
Ehangwch y mynegiad.
\int 2x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 3x\mathrm{d}x
Integreiddio'r swm fesul term.
2\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Ffactoreiddio allan y cysonyn ym mhob un o'r termau.
\frac{x^{4}}{2}-\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Ers \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int x^{3}\mathrm{d}x gyda \frac{x^{4}}{4}. Lluoswch 2 â \frac{x^{4}}{4}.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+3\int x\mathrm{d}x
Ers \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int x^{2}\mathrm{d}x gyda \frac{x^{3}}{3}. Lluoswch -1 â \frac{x^{3}}{3}.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+\frac{3x^{2}}{2}
Ers \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ar gyfer k\neq -1, disodli \int x\mathrm{d}x gyda \frac{x^{2}}{2}. Lluoswch 3 â \frac{x^{2}}{2}.
\frac{3x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{2}
Symleiddio.
\frac{3x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{2}+С
Os yw F\left(x\right) yn integryn amhendant o f\left(x\right), yna bydd F\left(x\right)+C yn rhoi’r set o holl integrynnau amhendant f\left(x\right). Felly, ychwanegwch gysonyn yr integryn C\in \mathrm{R} at y canlyniad.