Datrys ar gyfer a (complex solution)
\left\{\begin{matrix}a=-\frac{\gamma }{s_{n}\theta -1}\text{, }&\theta =0\text{ or }s_{n}\neq \frac{1}{\theta }\\a\in \mathrm{C}\text{, }&\gamma =0\text{ and }s_{n}=\frac{1}{\theta }\text{ and }\theta \neq 0\end{matrix}\right.
Datrys ar gyfer s_n (complex solution)
\left\{\begin{matrix}s_{n}=\frac{a-\gamma }{a\theta }\text{, }&a\neq 0\text{ and }\theta \neq 0\\s_{n}\in \mathrm{C}\text{, }&\left(\gamma =0\text{ and }a=0\right)\text{ or }\left(a=\gamma \text{ and }\theta =0\text{ and }\gamma \neq 0\right)\end{matrix}\right.
Datrys ar gyfer a
\left\{\begin{matrix}a=-\frac{\gamma }{s_{n}\theta -1}\text{, }&\theta =0\text{ or }s_{n}\neq \frac{1}{\theta }\\a\in \mathrm{R}\text{, }&\gamma =0\text{ and }s_{n}=\frac{1}{\theta }\text{ and }\theta \neq 0\end{matrix}\right.
Datrys ar gyfer s_n
\left\{\begin{matrix}s_{n}=\frac{a-\gamma }{a\theta }\text{, }&a\neq 0\text{ and }\theta \neq 0\\s_{n}\in \mathrm{R}\text{, }&\left(\gamma =0\text{ and }a=0\right)\text{ or }\left(a=\gamma \text{ and }\theta =0\text{ and }\gamma \neq 0\right)\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
\gamma =a-as_{n}\theta
Defnyddio’r briodwedd ddosbarthu i luosi a â 1-s_{n}\theta .
a-as_{n}\theta =\gamma
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(1-s_{n}\theta \right)a=\gamma
Cyfuno pob term sy'n cynnwys a.
\frac{\left(1-s_{n}\theta \right)a}{1-s_{n}\theta }=\frac{\gamma }{1-s_{n}\theta }
Rhannu’r ddwy ochr â 1-s_{n}\theta .
a=\frac{\gamma }{1-s_{n}\theta }
Mae rhannu â 1-s_{n}\theta yn dad-wneud lluosi â 1-s_{n}\theta .
\gamma =a-as_{n}\theta
Defnyddio’r briodwedd ddosbarthu i luosi a â 1-s_{n}\theta .
a-as_{n}\theta =\gamma
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
-as_{n}\theta =\gamma -a
Tynnu a o'r ddwy ochr.
\left(-a\theta \right)s_{n}=\gamma -a
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(-a\theta \right)s_{n}}{-a\theta }=\frac{\gamma -a}{-a\theta }
Rhannu’r ddwy ochr â -a\theta .
s_{n}=\frac{\gamma -a}{-a\theta }
Mae rhannu â -a\theta yn dad-wneud lluosi â -a\theta .
s_{n}=-\frac{\gamma -a}{a\theta }
Rhannwch \gamma -a â -a\theta .
\gamma =a-as_{n}\theta
Defnyddio’r briodwedd ddosbarthu i luosi a â 1-s_{n}\theta .
a-as_{n}\theta =\gamma
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\left(1-s_{n}\theta \right)a=\gamma
Cyfuno pob term sy'n cynnwys a.
\frac{\left(1-s_{n}\theta \right)a}{1-s_{n}\theta }=\frac{\gamma }{1-s_{n}\theta }
Rhannu’r ddwy ochr â 1-s_{n}\theta .
a=\frac{\gamma }{1-s_{n}\theta }
Mae rhannu â 1-s_{n}\theta yn dad-wneud lluosi â 1-s_{n}\theta .
\gamma =a-as_{n}\theta
Defnyddio’r briodwedd ddosbarthu i luosi a â 1-s_{n}\theta .
a-as_{n}\theta =\gamma
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
-as_{n}\theta =\gamma -a
Tynnu a o'r ddwy ochr.
\left(-a\theta \right)s_{n}=\gamma -a
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(-a\theta \right)s_{n}}{-a\theta }=\frac{\gamma -a}{-a\theta }
Rhannu’r ddwy ochr â -a\theta .
s_{n}=\frac{\gamma -a}{-a\theta }
Mae rhannu â -a\theta yn dad-wneud lluosi â -a\theta .
s_{n}=-\frac{\gamma -a}{a\theta }
Rhannwch \gamma -a â -a\theta .
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}