Enrhifo
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Ehangu
\frac{x^{4}}{625}-\frac{x^{3}}{625}-\frac{x}{25}+\frac{1}{25}
Graff
Rhannu
Copïo i clipfwrdd
\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
Rhannwch x-1 â \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} drwy luosi x-1 â chilydd \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}}.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
I godi \frac{x}{5} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin 5^{3} a 5 yw 125. Lluoswch \frac{1}{5} â \frac{25}{25}.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
Gan fod gan \frac{x^{3}}{125} a \frac{25}{125} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
Mynegwch \left(x-1\right)\times \frac{x^{3}-25}{125} fel ffracsiwn unigol.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
Mynegwch \frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} fel ffracsiwn unigol.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Lluosi 125 a 5 i gael 625.
\frac{x^{4}-25x-x^{3}+25}{625}
Defnyddio’r briodwedd ddosbarthu i luosi x-1 â x^{3}-25.
\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
Rhannwch x-1 â \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} drwy luosi x-1 â chilydd \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}}.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
I godi \frac{x}{5} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin 5^{3} a 5 yw 125. Lluoswch \frac{1}{5} â \frac{25}{25}.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
Gan fod gan \frac{x^{3}}{125} a \frac{25}{125} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
Mynegwch \left(x-1\right)\times \frac{x^{3}-25}{125} fel ffracsiwn unigol.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
Mynegwch \frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} fel ffracsiwn unigol.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
Lluosi 125 a 5 i gael 625.
\frac{x^{4}-25x-x^{3}+25}{625}
Defnyddio’r briodwedd ddosbarthu i luosi x-1 â x^{3}-25.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}