Datrys ar gyfer h (complex solution)
\left\{\begin{matrix}\\h=\frac{4}{5359375}\approx 0.000000746\text{, }&\text{unconditionally}\\h\in \mathrm{C}\text{, }&r=0\end{matrix}\right.
Datrys ar gyfer h
\left\{\begin{matrix}\\h=\frac{4}{5359375}\approx 0.000000746\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&r=0\end{matrix}\right.
Datrys ar gyfer r (complex solution)
\left\{\begin{matrix}\\r=0\text{, }&\text{unconditionally}\\r\in \mathrm{C}\text{, }&h=\frac{4}{5359375}\end{matrix}\right.
Datrys ar gyfer r
\left\{\begin{matrix}\\r=0\text{, }&\text{unconditionally}\\r\in \mathrm{R}\text{, }&h=\frac{4}{5359375}\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
\frac{4}{3}r^{3}=\frac{h}{3}\times \left(\frac{175r}{1}\right)^{3}
Rhaid i chi ganslo \pi allan ar y ddwy ochr.
4r^{3}=h\times \left(\frac{175r}{1}\right)^{3}
Lluoswch ddwy ochr yr hafaliad â 3.
4r^{3}=h\times \left(175r\right)^{3}
Mae rhannu unrhyw beth ag un yn rhoi'r rhif hwnnw.
4r^{3}=h\times 175^{3}r^{3}
Ehangu \left(175r\right)^{3}.
4r^{3}=h\times 5359375r^{3}
Cyfrifo 175 i bŵer 3 a chael 5359375.
h\times 5359375r^{3}=4r^{3}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
5359375r^{3}h=4r^{3}
Mae'r hafaliad yn y ffurf safonol.
\frac{5359375r^{3}h}{5359375r^{3}}=\frac{4r^{3}}{5359375r^{3}}
Rhannu’r ddwy ochr â 5359375r^{3}.
h=\frac{4r^{3}}{5359375r^{3}}
Mae rhannu â 5359375r^{3} yn dad-wneud lluosi â 5359375r^{3}.
h=\frac{4}{5359375}
Rhannwch 4r^{3} â 5359375r^{3}.
\frac{4}{3}r^{3}=\frac{h}{3}\times \left(\frac{175r}{1}\right)^{3}
Rhaid i chi ganslo \pi allan ar y ddwy ochr.
4r^{3}=h\times \left(\frac{175r}{1}\right)^{3}
Lluoswch ddwy ochr yr hafaliad â 3.
4r^{3}=h\times \left(175r\right)^{3}
Mae rhannu unrhyw beth ag un yn rhoi'r rhif hwnnw.
4r^{3}=h\times 175^{3}r^{3}
Ehangu \left(175r\right)^{3}.
4r^{3}=h\times 5359375r^{3}
Cyfrifo 175 i bŵer 3 a chael 5359375.
h\times 5359375r^{3}=4r^{3}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
5359375r^{3}h=4r^{3}
Mae'r hafaliad yn y ffurf safonol.
\frac{5359375r^{3}h}{5359375r^{3}}=\frac{4r^{3}}{5359375r^{3}}
Rhannu’r ddwy ochr â 5359375r^{3}.
h=\frac{4r^{3}}{5359375r^{3}}
Mae rhannu â 5359375r^{3} yn dad-wneud lluosi â 5359375r^{3}.
h=\frac{4}{5359375}
Rhannwch 4r^{3} â 5359375r^{3}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}